DOI QR코드

DOI QR Code

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University) ;
  • Skinner, Daniel Z. (USDA/ARS, Department of Crop and Soil Sciences, 209 Johnson Hall, Washington State University)
  • Received : 2010.03.05
  • Accepted : 2010.03.19
  • Published : 2010.03.31

Abstract

Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

References

  1. Allen, S.P., Polazzi, J.O., Gierse, J.K., Easton, A.M., 1992.Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in E. coli, J. Bacteriol. 174, 6938-6947. https://doi.org/10.1128/jb.174.21.6938-6947.1992
  2. Allen, R.D., 1995. Dissection of oxidative stress tolerance using transgenic plants, Plant Physiol. 107, 1049-1054. https://doi.org/10.1104/pp.107.4.1049
  3. Baek, K.-H., Skinner, D.Z., 2003. Alteration of antioxi-dant enzyme gene expression during cold acclimation of near-isogenic wheat lines, Plant Sci. 165, 1221-1227. https://doi.org/10.1016/S0168-9452(03)00329-7
  4. Baek, K.-H., Skinner, D.Z., 2006. Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold accli-mation, Plant Cell Rep. 25: 223-230. https://doi.org/10.1007/s00299-005-0073-6
  5. Basu, U., Good, A.G., Taylor, G.J., 2001. Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum, Plant, Cell, and Environ. 24, 1269-1278.
  6. Beauchamp, C.O., Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem. 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  7. Borgstahl G.E.O., Parge H.E., Hickey M.J., Johnson M.J., Boissinot M., Hallewell R.A., Lepock J.R., Cabelli D.E., Tainer J.A, 1996. Human mitochon-drial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface, Biochemistry 35: 4287-4297. https://doi.org/10.1021/bi951892w
  8. Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montague, M., Inze, D., 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants, EMBO J. 10, 1723-1732.
  9. Bowler, C., Montagu, M.V., Inze, D., 1992. Superoxide dismutase and stress tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  10. Breusegem, F. , Slooten, L., Stassart, J.M., Botterman, J., Moens, T., Montagu, M., Inze, D., 1999. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress, J. Exp. Bot. 50, 71-78. https://doi.org/10.1093/jexbot/50.330.71
  11. Carlioz, A., Touati, D., 1986. Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life?, EMBO J. 5, 623-630.
  12. Chen, C.-N., Pan, S.-M., 1996. Assay of superoxide dismutase activity by combining electrophoresis and densitometry, Bot. Bull.Acad. Sin. 37, 107-111.
  13. Fischer, B., Sumner, L., Goodenough, P., 1993. Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol. Bioeng. 41, 3-13. https://doi.org/10.1002/bit.260410103
  14. Fucci, L., Oliver, C.N., Coon, M.J., Stadtman, E.R.,1983. Inactivation of metabolic enzymes by mixed-function oxidation reaction: possible implication in protein turnover and ageing, Proc. Natl. Acad. Sci. U.S.A. 80, 1521-1525. https://doi.org/10.1073/pnas.80.6.1521
  15. Giannopolitis, C.N., Ries, K., 1977. Superoxide dis-mutase I. Occurrence in higher plants, Plant Physiol. 59, 309-314. https://doi.org/10.1104/pp.59.2.309
  16. Greenleaf, W.B., Perry, J.J., Hearn, A.S., Cabelli, D.E., Lepock, J.R., Stroupe, M.E., Tainer, J.A., Nick, H.S., Silverman, D.N. 2004. Role of hydrogen bonding in the active site of human manganese superoxide dismutase, Biochemistry 43, 7038-7045. https://doi.org/10.1021/bi049888k
  17. Halliwell, B., Gutteridge, J.M.C., 2007. Free radicals in biology and medicine, Fourth ed. Oxford Unizver-sity Press, New York, pp 262-282.
  18. Houot, V., Etienne, P., Petitot, A.S., Barbier, S., Blein, J.P., Suty, L., 2001. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner, J. Exp. Bot. 52, 1721-1730. https://doi.org/10.1093/jexbot/52.361.1721
  19. Kendall, E.J., McKersie, B.D., 1989. Free radical and freezing injury to cell membranes of winter wheat, Physiol. Plant. 76, 86-94. https://doi.org/10.1111/j.1399-3054.1989.tb05457.x
  20. Kim, A., Joseph, S., Khan, A., Epstein, C.J., Sobel, R., Huang, T.T., 2010. Enhanced expression of mito-chondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin, Free. Radic. Biol. Med. doi:10.1016/j.freeradbiomed.2010.02.028. https://doi.org/10.1016/j.freeradbiomed.2010.02.028
  21. Laemmli, U.K.,1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680-685. https://doi.org/10.1038/227680a0
  22. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin,F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. ClustalW and ClustalX version 2, Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  23. Lee, N., 1980. Molecular aspects of ara regulation, in: Miller, J.H., Reznikoff, W.S. (Eds) The Operon, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, pp. 389-410.
  24. Lee, N., Francklyn, C., Hamilton, E.P., 1987. Arabinose-Induced Binding of AraC Protein to aria Activates the araBAD Operon Promoter, Proc. Natl. Acad. Sci. U.S.A. 84, 8814-8818. https://doi.org/10.1073/pnas.84.24.8814
  25. McCord, J.M., Fridovich, I., 1969. Superoxide dismutase, an enzymic function for Erythrocuprein (Hemo-cuprein), J. Biol. Chem. 244, 6049-6055.
  26. McKersie, B.D., Chen, Y.R., De Beus, M., Bowler, S.R., Inze, D., D’Halluin, K., Botterman, J., 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.), Plant Physiol. 103, 1155-1163. https://doi.org/10.1104/pp.103.4.1155
  27. Miao, Z., Gaynor, J.J., 1993. Molecular cloning, characteri-zation and expression of Mn-superoxide dismutase from the rubber tree (Hevea brasiliensis), Plant Mol. Biol. 23, 267-277. https://doi.org/10.1007/BF00029003
  28. Rubio, M.C., Ramos, J., Webb, K.J., Minchin, F.R., Gonzalez, E., Arrese-Igor, C., Becana, M., 2001. Expression studies of superoxide dismutases in nodules and leaves of transgenic alfalfa reveal abundance of iron-containing isozymes, posttrans-lational regulation, and compensation of isozyme activities, Mol. Plant Microbe In. 14, 1178-1188. https://doi.org/10.1094/MPMI.2001.14.10.1178
  29. Rudolph, R., Lilie, H., 1996. In vitro folding of inclusion body proteins, FASEB J. 10, 49-56. https://doi.org/10.1096/fasebj.10.1.8566547
  30. Sambrook, J., Russell, D.W., 2001. Molecular cloning: A laboratory manual, third ed. Cold Spring Laboratory, New York
  31. Sato, I., Zu, J., Nishikawa, S., Kashimura, N., 1993. Depolymerization of hyaluronic acid by D-fructose 6-phosphate, Biosci. Biotechnol. Biochem. 57, 2005-2009. https://doi.org/10.1271/bbb.57.2005
  32. Schrank, I.S., Sims, P.F.G., Oliver, S.G., 1988. Functional expression of the yeast Mn-superoxide dismutase gene in Escherichia coli requires deletion of the signal peptide sequence, Gene 73, 121-130. https://doi.org/10.1016/0378-1119(88)90318-6
  33. Storlie, E.W., Allan, R.E., Walker-Simmons, M.K., 1998. Effect of the Vrn1-Fr1 interval on cold hardiness levels in near isogenic wheat lines, Crop Sci. 38, 483-488. https://doi.org/10.2135/cropsci1998.0011183X003800020035x
  34. Streller, S., Kromer, S., Wingsle, G., 1994. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L, Plant Cell Physiol. 35, 859-867.
  35. Wang, Y.C., Qu, G, Z., Li, H.Y., Wu, Y.J., Wang, C., Liu, G.F.,Yang, C.P., 2010. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii, Mol. Biol. Rep. 37, 1119-1124. https://doi.org/10.1007/s11033-009-9884-9
  36. Wilder, M.S., Mass, A., 1990. Composition for pre-venting or alleviating skin irritation by formulations containing superoxide dismutase, U.S. Patent 4,957, 740, 1-12.
  37. Wu, G., Shortt, B.J., Lawrence, E.B., Fitzsimmons, J.L.K.C., Levine, E.B., Raskin, I., Shah, D.M., 1997. Activation of host defense mechanisms by elevated production of $H_2O_2$ in transgenic plants, Plant Physiol. 115, 427-435. https://doi.org/10.1104/pp.115.2.427
  38. Wu, G., Wilen, R.W., Robertson, A.J., Gusta, L.V., 1999. Isolation, chromosome localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/Zinc superoxide dismutase genes in wheat, Plant Physiol. 120, 513-520. https://doi.org/10.1104/pp.120.2.513
  39. Xie, Y., Liu, Y., Meng, M., Chen, L., Zhu, Z., 2003. Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus, Plant Mol. Biol. 53, 1-14. https://doi.org/10.1023/B:PLAN.0000009257.37471.02
  40. Zelko, I.N., Mariani, T.J., Folz, R.J., 2002. Superoxide dismutase multigene family: A comparison of CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33, 337-349. https://doi.org/10.1016/S0891-5849(02)00905-X
  41. Zhu, D., Scandalios, J.G., 1993. Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family, Proc. Natl. Acad. Sci. U.S.A. 90, 9310-9314. https://doi.org/10.1073/pnas.90.20.9310

Cited by

  1. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants vol.01, pp.01, 2012, https://doi.org/10.4236/jacen.2012.11006