Effect of Sulforaphane on LPS-Induced Matrix Metalloproteinase-9 (MMP-9) Expression

Sulfolaphane이 lipopolysaccharide (LPS)에 의해 유도된 matrix metalloproteinase-9 (MMP-9) 발현에 미치는 영향

  • Lee, Jung-Tae (Department of Immunology, School of Medicine, Keimyung University) ;
  • Woo, Kyung-Jin (Department of Immunology, School of Medicine, Keimyung University) ;
  • Kwon, Taeg-Kyu (Department of Immunology, School of Medicine, Keimyung University)
  • 이정태 (계명대학교 의과대학 면역학 교실) ;
  • 우경진 (계명대학교 의과대학 면역학 교실) ;
  • 권택규 (계명대학교 의과대학 면역학 교실)
  • Received : 2010.01.05
  • Accepted : 2010.02.22
  • Published : 2010.02.28


Sulforaphane is a naturally occurring member of the iosothiocyanate family, which reveals chemopreventive capacities including anti-cancer, anti-inflammation and inhibition of MMP-9 activities. In this study, we investigated the effect of sulforaphane on the expression of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide (LPS)-induced Raw 264.7 cells. Sulforaphane strikingly suppressed the LPS-induced MMP-9 activity and mRNA expression in a dose-dependent manner. In addition, sulforaphane inhibited not only the LPS-induced MMP-9 promoter activity but also LPS-mediated activator protein-1 (AP-1) and nuclear factor-kB (NF-${\kappa}B$) promoter activity. Transient transfection by MMP-9 constructs, in which specific transcriptional factors were mutagenized, indicated that the effects of LPS and sulforaphane were mediated via AP-1 and NF-${\kappa}B$ response elements. We found that sulforaphane had the ability to suppress LPS-induced invasion in vitro. Taken together, these results demonstrated that sulforaphane effectively suppressed LPS-induced MMP-9 expression via modulation of promoter elements (AP-1 and NF-${\kappa}B$) in MMP-9 transcriptional activation.


Supported by : 한국과학재단


  1. Annabi, B., S. Rojas-Sutterlin, M. Laroche, M. P. Lachambre, R. Moumdjian, and R. Beliveau. 2008. The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol. Nutr. Food Res. 52, 692-700.
  2. Asakage, M., N. H. Tsuno, J. Kitayama, T. Tsuchiya, S. Yoneyama, J. Yamada, Y. Okaji, S. Kaisaki, T. Osada, K. Takahashi, and H. Nagawa. 2006. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis 9, 83-91.
  3. Basset, P., A. Okada, M. P. Chenard, R. Kannan, I. Stoll, P. Anglard, J. P. Bellocq, and M. C. Rio. 1997. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol. 15, 535-541.
  4. Brooks, J. D., V. G. Paton, and G. Vidanes. 2001. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol. Biomarkers Prev. 10, 949-954.
  5. Gum, R., H. Wang, E. Lengyel, J. Juarez, and D. Boyd. 1997. Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase-and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481-1493.
  6. Juge, N., R. F. Mithen, and M. Traka. 2007. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol. Life Sci. 64, 1105-1127.
  7. Kerkela, E, and U. Saarialho-Kere. 2003. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp. Dermatol. 12, 109-125.
  8. Lee, P. P., J. J. Hwang, G. Murphy, and M. M. Ip. 2000. Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells. Endocrinology 141, 3764-3773.
  9. Nelson, A. R., B. Fingleton, M. L. Rothenberg, and L. M. Matrisian. 2000. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135-1149.
  10. Rose, P., Q. Huang, C. N. Ong, and M. Whiteman. 2005. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol. 209, 105-113.
  11. Roy, R., J. Yang, and M. A. Moses. 2009. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27, 5287-5297.
  12. Sato, H. and M. Seiki. 1993. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395-405.
  13. Sato, H., M. Kita, and M. Seiki. 1993. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J. Biol. Chem. 268, 23460-23468.
  14. Simon, C., H. Goepfert, and D. Boyd. 1998. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res. 58, 1135-1139.
  15. Stetler-Stevenson, W. G. and A. E. Yu. 2001. Proteases in invasion: matrix metalloproteinases. Semin. Cancer Biol. 11, 143-152.
  16. Thejass, P. and G. Kuttan. 2006. Antimetastatic activity of Sulforaphane. Life Sci. 78, 3043-3050.
  17. Woo, J. H., J. H. Lim, Y. H. Kim, S. I. Suh, D. S. Min, J. S. Chang, Y. H. Lee, J. W. Park, and T. K. Kwon. 2004. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23, 1845-1853.
  18. Woo, J. H., J. W. Park, S. H. Lee, Y. H. Kim, I. K. Lee, E. Gabrielson, S. H. Lee, H. J. Lee, Y. H. Kho, and T. K. Kwon. 2003. Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Res. 63, 3430-3434.