Effect of Bacillus subtilis PNG-4 with or without Lactobacillus acidophilus on malodorous gas emission of excreta in laying hens

Bacillus subtilis PNG-4의 단독 및 Lactobacillus acidophilus와의 혼합 사용이 산란계의 건물소화율, 혈액성상 및 계분의 악취 발생에 미치는 영향

  • Kim, Lee-Su (Department of Pet Animal Science, Woosong Information college) ;
  • Cha, Sang-Woo (Daejeon Institute of Agricultural Technology) ;
  • Cho, Sung-Kyung (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Kim, Sung-Bok (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Bong-Duk (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Soo-Kee (Department of Animal Science and Biotechnology, Chungnam National University)
  • 김이수 (우송정보대학 애완동물계열) ;
  • 차상우 (대전시농업기술센터) ;
  • 조성경 (충남대학교 동물자원생명과학과) ;
  • 김성복 (충남대학교 동물자원생명과학과) ;
  • 이봉덕 (충남대학교 동물자원생명과학과) ;
  • 이수기 (충남대학교 동물자원생명과학과)
  • Received : 2010.04.09
  • Accepted : 2010.06.11
  • Published : 2010.06.30


Two experiments were conducted to investigate the effect of probiotics on the malodor removal. In experiment 1, dietary effects (several malodorous gas concentration of excreta, dry matter metabolizability, and blood profiles) were determined using laying hens. A total of 30 Hy-line brown layers, 68-wk of age, were randomly allocated into 5 groups with 3 replicates of 2 birds each. The treatments were probiotics free, 0.2% and 0.4 % addition of mixed probiotics (Bacillus subtilis PNG-4 +Lactobacillus acidophilus LAS), and 0.2 and 0.4 % addition of single probiotics (Bacillus subtilis PNG-4). In experiment 2, the effects of mixing of probiotics into the excreta on the malodorous gas removal was investigated. There were three treatments (probiotics free, Bacillus subtilis PNG-4 +Lactobacillus acidophilus LAS, and Bacillus subtilis PNG-4) with three replicates. The malodorous gas concentrations were detected at 0, 3, 7 and 14 day of incubation. In experiment 1, ammonia concentration was significantly decreased by feeding mixed probiotics at 14th day of incubation. However, amines, hydrogen sulfide, ethylmercapthan, and methylmercapthan were not significantly affected by mixed probiotics. Dry matter metabolizability was significantly increased by feeding probiotics, but no significant differences between single and mixed probiotics. There was no significant differences in blood profiles. In experiment 2, mixing of probiotics into the excreta did not affect the concentration of ammonia, amines, hydrogen sulfide, ethylmercapthan, and methylmercapthan. Therefore, these experiments suggested that Bacillus subtilis PNG-4 + Lactobacillus acidophilus LAS supplementations could improve ammonia gas removal, and dry matter metabolizability in layers. Also, decrease of ammonia concentration was higher in mixed probiotics group compare to the single probiotics group. On the other hand, mixing of probiotics into the excreta appeared not to be a useful method.


  1. Bloksma N., Ettekoven H., Hothuis F. M., van Noorle-Jansen L, De Reuver M. J.. Kreeflenberg J. G. and Willers J. M. 1981. Effects of Latobacillus on parameters of non-specific resistance of mice. Med. Microbiol. Immunol. 170:45-53.
  2. Collington G. K., Parker D. S., Elis M. and Armstrong D. G. 1988. The influence of probios or tyrosine on growth of pigs and development of gastrointestinal tract. Anim. Prod. 46:521 (Abstr.).
  3. Duncan D. B. 1955. Multiple range and multiple F tests. Biometrics. 11:1-42.
  4. Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378.
  5. Gilliland S. E. and Kim H. S. 1984. Effect of viable starter culture bacteria in yogurt on lactose utilization in human. J. Dairy Sci. 67:1-6.
  6. Jonsson E. and Conway P. 1992. Probiotics for pigs. In: R. Fuller(Ed.) Probiotics: The Scientific Basis. Champman & Hall, London. pp. 260-316.
  7. Koo J. H., Choi I. J., Nam S. H., Lee H. J., Shin Z. I. and Oh T. K. 1997. Medium optimization for production of thermostable alkaline proteases from Bacillus licheniformis NS70, Kor. J. Appl. Microbiol. Biotechnol. 25(2):207-211.
  8. Lee S. J., Chang D. I. and Chang H. H. 2006. Effect of biofilter made of composted pine tree bark and perite on reducing odor from pif house. Kor. J. Environ. Agr. 25(2):118-123.
  9. Lessard M. and Brisson G. J. 1987. Effect of a Lactobacillus fermentation product on growth, immune response and fecal enzyme activity in weaning pigs. Can. J. Anim. Sci. 67:509.
  10. Perdigon G, Nader de Macias M. E., Alvarez S., Oliver G. and Pesce de Ruiz Holgado A. A. 1987. Enhancemet of immune response in mice fed with Streptococcus thermophilus and Lactobacillus acidophillus. J. Diary Sci. 70:919-926.
  11. Saitou N.. and Nei M. 1987. The neighbour-joining method: a new method for instructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  12. Santoso U., Ohtani S., Tanaka K. and Sakaida M. 1999. Dried Bacillus subtillis culture ammonia gas release in poultry house. Asian-Aus. J. Anim. Sci. 12:806-809.
  13. Scheuermann S.E. 1993. Effect of the probiotic paciflor on energy and protein metabolism in growing pigs. Anim. Feed Sci. Technol. 41:181.
  14. Thomson J. D., Higgins D. G. and Gibson T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
  15. Timmerman H. M., Koning C. J., Mulder L., Rombouts F. M. and Beynen A. C. 2004. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 15;96:219-233.
  16. Tortuero F. and Femandez E. 1995. Effects of inclusion of microbial cultures in barley-based diets fed to laying hens. Anim. Feed Technol. 53:255-265.
  17. Underdahl N. R., Torres M. A. and Dost A. R. 1982. Effect of Streptococuus faecium C-68 in the control of Escherichia coli. indused diarrhea in gnotobiotic pigs. J. Vet. Res. 43:227-233.
  18. 太田欽幸, 池田貢, 逸見良則. 1979. 鷄はふんの微生物によ る急速無臭化. 日本 醱酵工學會誌. 57(5):372-379.
  19. 고영두, 신재형, 김삼철, 김영민, 박기동, 김재황. 2003. 복합 생균제첨가가 육계 생산성, 유해가스 발생량 및 맹장 내 균총에 미치는 영향. 한국동물자원과학회지. 45(4): 559-568.
  20. 김상호, 박수영, 유동조, 이상진, 강보석, 최철환, 류경선. 2000. 유산균의 첨가 급여가 산란 생산성, 소화기관 미생물 변화 및 계란 품질에 미치는 영향. 한국가금학회지. 27:235-242
  21. 김재황, 김영민, 김삼철, 하홍민, 고영두, 김창현. 2001. 복합생균제($Economix^{\circledR})$)의 사료 내 첨가가 육계의 생산성 및 계사 내 유해가스 감소에 미치는 영향. 한국동물자원과학회지. 43(1):349-360.
  22. 김소영, 노용호, 강성각, 김영범, 장우진, 김동준, 윤현식. 2007. Bacillus subtilis IB101을 이용한 암모니아 가스 제거 및 생산배지 최적화. 한국생물공학회지. 22(3):162-167.
  23. 라정찬, 한혜정, 송지은, 2004. 백년초 혼합 생균제를 이용한 돼지 및 육계에서의 생산성 향상과 환경개선 효과. 한국수의공중보건학회지. 28(3): 157-167.
  24. 최우영, 이수기, 장동일, 2004. 축산 악취경감을 위한 친환경적 생물학적 시스템의 개발. 농림부.
  25. 환경부. 2005. 악취방지법. 환경부.