Journal of the Korean Institute of Electrical and Electronic Material Engineers (한국전기전자재료학회논문지)
- Volume 23 Issue 7
- /
- Pages.545-549
- /
- 2010
- /
- 1226-7945(pISSN)
- /
- 2288-3258(eISSN)
DOI QR Code
Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements
Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구
-
Jeong, Kwang-Seok
(Department of Electronic Engineering, Chungnam National University) ;
- Kim, Young-Su (Department of Electronic Engineering, Chungnam National University) ;
- Park, Jeong-Gyu (Department of Electronic Engineering, Chungnam National University) ;
-
Yang, Seung-Dong
(Department of Electronic Engineering, Chungnam National University) ;
- Kim, Yu-Mi (Department of Electronic Engineering, Chungnam National University) ;
-
Yun, Ho-Jin
(Department of Electronic Engineering, Chungnam National University) ;
- Han, In-Shik (Department of Electronic Engineering, Chungnam National University) ;
-
Lee, Hi-Deok
(Department of Electronic Engineering, Chungnam National University) ;
-
Lee, Ga-Won
(Department of Electronic Engineering, Chungnam National University)
-
정광석
(충남대학교 전자공학과) ;
- 김영수 (충남대학교 전자공학과) ;
- 박정규 (충남대학교 전자공학과) ;
-
양승동
(충남대학교 전자공학과) ;
- 김유미 (충남대학교 전자공학과) ;
-
윤호진
(충남대학교 전자공학과) ;
- 한인식 (충남대학교 전자공학과) ;
-
이희덕
(충남대학교 전자공학과) ;
-
이가원
(충남대학교 전자공학과)
- Received : 2010.05.17
- Accepted : 2010.06.04
- Published : 2010.07.01
Abstract
Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (
File
Acknowledgement
Supported by : 한국연구재단
References
- O. T. Niwa, T. Ben, and Y. Takahashi, J. Appl. Phys. Part 1, 40, 297 (2001). https://doi.org/10.1143/JJAP.40.297
- J. H. Chung, J. Y. Lee, and H. S. Kim, Thin Solid Film, 516, 9 (2008).
- R. B. M. Cross and M. M. De Souza, Appl. Phys. Lett. 89, 263513 (2006). https://doi.org/10.1063/1.2425020
- K. Nomura1, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95, 013502 (2009). https://doi.org/10.1063/1.3159831
- Y.-S. Kim, M.-H. Kang, D.-H. Nam, K.-I Choi, H.-D. Lee, and G.-W. Lee, J. KIEEME 22, 821 (2009).
- A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008). https://doi.org/10.1063/1.2824758
- S. L. Rumyantsev, S. H. Jin, M. S. Shur, and M.-S. Park, J. Appl. Phys. 105, 124504 (2009).
- C. A. Dimitriadis, F. V. Farmakis, G. Kamarinos, and J. Brini, J. Appl. Phys. 91, 12 (2002).
- I.-T. Cho, W.-S. Cheong, C.-S. Hwang, J.-M. Lee, H.-I. Kwon, and J.-H. Lee, IEEE Electron. Device Lett. 30, 828 (2009). https://doi.org/10.1109/LED.2009.2023543
- R. B. M. Cross and M. M. De Souza, IEEE Trans. Device & Materials Reliability, 8, 2 (2008). https://doi.org/10.1109/TDMR.2008.919748
- L. K. J. Vandamme, X. Li, and D. Rigaud, IEEE Trans. Electron. Devices 41, 1936 (1994). https://doi.org/10.1109/16.333809
- D. Rigaud, M. Valenza, and J. Rhayem, IEE Proc., Circuits Devices Syst. 149, 75 (2002). https://doi.org/10.1049/ip-cds:20020063
- E. Simoen and C. Claeys, Solid-State Electron. 43, 865 (1998).
- Y. Cheng and C. Hu, MOSFET modeling & BSIM3 user's guide (Kluwer Academic Publishers, Massachusetts, USA, 2002).
- J.-H. Lee, J. Electroceram. 23, 512 (2009). https://doi.org/10.1007/s10832-008-9523-1