Highly Enhanced EL Properties of PF Copolymers with Pyrazole Derivatives

피라졸 유도체를 함유한 폴리알킬플루오렌 공중합체의 향상된 EL 특성

  • Kang, In-Nam (Department of Chemistry, The Catholic University of Korea) ;
  • Lee, Ji-Hoon (Department of Polymer Science and Engineering, Chungju National University)
  • 강인남 (가톨릭대학교 화학과) ;
  • 이지훈 (충주대학교 나노고분자공학과)
  • Received : 2010.04.19
  • Accepted : 2010.06.09
  • Published : 2010.07.01


We have synthesized new blue electroluminescent polyalkylfluorene-based copolymers [poly(F-co-Py)x:y, where x:y = 99:1 or 95:5 mole ratios] containing the hole-injecting pyrazole derivative [3,3'-(4,6-bis(octyloxy)-1,3-phenylene)bis(1,5-diphenyl-4,5-dihydro-1H-pyrazole] through Ni(0) mediated polymerization, and their electroluminescent properties were investigated. Electroluminescent (EL) devices were fabricated with ITO / PEDOT:PSS (110 nm) / copolymers or PF homopolymer (80 nm) / Ca (50 nm) / Al (200 nm) configuration. Each EL device constructed from the copolymer exhibited significantly enhanced brightness and efficiency compared with a device constructed from the PF homopolymer. The EL device constructed with poly(F-co-Py)99:1 exhibited the highest luminous efficiency and brightness (0.95 cd/A and $2,907\;cd/m^2$, respectively). The achieved luminous efficiency was an excellent result, providing almost a 4-fold improvement on the efficiency obtainable with the a PF homopolymer device. This enhanced efficiency of the copolymer devices results from their improved hole injection and more efficient charge carrier balance, which arises from the HOMO level (~5.83 eV) of the poly(F-co-Py)99:1 copolymer, which is higher than that of the PF homopolyme (~5.90 eV).


Supported by : 한국학술진흥재단


  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990).
  3. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992).
  4. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, and R. W. Gymer, Nature 356, 47 (1992).
  5. K. L. Paik, N. S. Baek, H. K. Kim, J. H. Lee, and Y. Lee, Macromolecules 35, 6782 (2002).
  6. N. S. Baek, H. K. Kim, E. H. Chae, B. H. Kim, and J. H. Lee, Macromolecules 35, 9282 (2002).
  7. J. H. Lee, H. S. Yu, W. H. Kim, Y. S. Gal, J. H. Park, and S. H Jin, J. Polym. Sci. Part A. Polym. Chem. 38, 4185 (2000).<4185::AID-POLA30>3.0.CO;2-F
  8. B. S. Lee, X. W. Gao, J. Y. Park, Y. G. Baek, J. W. Yang, K. K. Paek, and S. H. Ju, J. KIEEME 21, 562 (2008).
  9. A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed. 37, 402 (1998).<402::AID-ANIE402>3.0.CO;2-9
  10. H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Schenk, I. Parker, and Y. Cao, Adv. Mater. 12, 43 (2000).
  11. J. H. Lee and D. H. Hwang, Chem. Commun. 22, 2836 (2003).
  12. S. K. Kim, J. H. Eom, D. Mi, C. H. Jumg, J. H. Lee, I. N. Kang, H. H. Kim, and D. H. Hwang, Syn. Met. 159, 1672 (2009).
  13. J. S. Kang, S. K. Kim, J. Y. Jung, J. H. Lee, J. Y. Jaung, and J. W. Park, Mol. Cryst. Liq. Cryst. 514, 171 (2009).