DOI QR코드

DOI QR Code

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
  • Received : 2010.03.06
  • Accepted : 2010.03.09
  • Published : 2010.03.25

Abstract

The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

Acknowledgement

Supported by : Korea Research Foundation

References

  1. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, (1991).
  2. D.L. Brown, R. Cortez, and M.L. Minion Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. phys., 168 (2001), 464-499. https://doi.org/10.1006/jcph.2001.6715
  3. G.F. Carey, S.S. Chow and M.K. Seager, Approximate boundary-flux calculations Comput. Meth. Appl. Mech. Eng., 50 (1985), 107-120. https://doi.org/10.1016/0045-7825(85)90085-4
  4. A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22, (1968), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
  5. W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci., 1 (2003), 317-332. https://doi.org/10.4310/CMS.2003.v1.n2.a6
  6. Weinan E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. https://doi.org/10.1137/0732047
  7. Vivette Girault, and Pierre-Arnaud Raviart, Finite Element Methods for Navier-stokes Equations, Springer-Verlag, (1986).
  8. R.H. Nochetto and J.-H. Pyo, Optimal relaxation parameter for the Uzawa method Numer. Math., 98 (2004), 695-702. https://doi.org/10.1007/s00211-004-0522-0
  9. R. Nochetto and J.-H. Pyo, Error Estimates for Semi-discrete Gauge Methods for the Navier-Stokes Equations, Math. Comp., 74 (2005), 521-542.
  10. A.I. Pehlivanov, R.D. Lazarov, G.F. Carey, and S.S. Chow, Superconvergence analysis of approximate boundary-flux calculations, Numer. Math., 63 (1992), 483-501. https://doi.org/10.1007/BF01385871
  11. Andreas Prohl Projection and Quasi-Compressiblity Methods for Solving the Incompressible Navier-Stokes Equations, B.G.Teubner Stuttgart, (1997).
  12. R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics, 1530 (1992), 167-183. https://doi.org/10.1007/BFb0090341
  13. A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox , Manual, 244 p., Preprint 06/2000 Freiburg.
  14. J. Shen, On error estimates of projection methods for Navier-Stokes equation: first order schemes, SIAM J. Numer. Anal., 29 (1992), 57-77. https://doi.org/10.1137/0729004
  15. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Siam CBMS 66, (1995).
  16. R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II. (French) Arch. Rational Mech. Anal., 33 (1969), 377-385.