DOI QR코드

DOI QR Code

Effect of the Addition of β-Hydroxybutyrate to Chemically Defined Maturation Medium on the Nuclear Maturation, Sperm Penetration and Embryonic Development of Porcine Oocytes In vitro

  • Endo, R. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki) ;
  • Ishii, A. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki) ;
  • Nakanishi, A. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki) ;
  • Nabenishi, H. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki) ;
  • Ashizawa, K. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki) ;
  • Tsuzuki, Y. (Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki)
  • Received : 2010.03.02
  • Accepted : 2010.07.10
  • Published : 2010.11.01

Abstract

We investigated the effects of various concentrations of ${\beta}$-hydroxybutyrate (BHB, 0, 0.1, 1 and 10 mM), a ketone body, added to chemically-defined maturation medium with or without energy substrates (glucose, pyruvate and lactate) on nuclear maturation rates up to the metaphase stage of the second meiotic division (M-II stage). In addition, we also assessed the influence of BHB on glutathione content, sperm penetration rate and embryonic development up to the blastocyst stage of oocytes matured under the presence of these energy substrates. Nuclear maturation rates up to the M-II stage of oocytes matured with BHB in each concentration group did not show a significant increase compared with the control (0 mM) groups in both the presence and absence of energy substrates. Although glutathione contents were not significantly different in each BHB concentration group, the sperm penetration rate in the 1 mM BHB group was significantly higher (p<0.05) and the embryonic development rate of oocytes up to the blastocyst stage was significantly lower (p<0.05) than the respective values of the control groups. These results suggest that BHB added to a chemically-defined maturation medium may stimulate sperm penetration while inhibiting embryonic development of porcine oocytes.

Keywords

Porcine oocytes;${\beta}$-Hydroxybutyrate;Nuclear Maturation;Embryonic Development

References

  1. Abeydeera, L. R., W. H. Wang, T. C. Cantley, A. Rieke, C. N.Murphy, R. S. Prather and B. N. Day. 2000. Development and viability of pig oocytes matured in a proteine-free medium containing epidermal growth factor. Theriogenology 54:787-797. https://doi.org/10.1016/S0093-691X(00)00390-3
  2. Brad, A. M., C. L. Bormann, J. E. Swain, R. E. Durkin, A. E.Johnson, A. L. Clifford and R. L. Krisher. 2003. Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol. Reprod. Dev. 64:492-498. https://doi.org/10.1002/mrd.10254
  3. Cheng, S., Q. Wu, F. Yang, M. Xu, M. Leski and G. Q. Chen. 2005. Influence of DL-$\beta$-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromol. 6:593-597. https://doi.org/10.1021/bm049465y
  4. Cheung, A., K. Swann and J. Carroll. 2000. The ability to generate normal $Ca^{2+}$ transients in response to spermatozoa develops during the final stages of oocyte growth and maturation. Hum. Reprod. 15:1389-1395. https://doi.org/10.1093/humrep/15.6.1389
  5. Durocher, L. L., K. W. Hinchcliff, S. P. DiBartola and S. E.Johnson. 2008. Acid-base and hormonal abnormalities in dogs with naturally occurring diabetes mellitus. J. Am. Vet. Med. Assoc. 232:1310-1320. https://doi.org/10.2460/javma.232.9.1310
  6. Eppig, J. J. 1996. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 8:485-489. https://doi.org/10.1071/RD9960485
  7. Funahashi, H., T. Koike and R. Sakai. 2008. Effect of glucose and pyruvate on nuclear and cytoplasmic maturation of porcine oocytes in a chemically defined medium. Theriogenology 70: 1041-1047. https://doi.org/10.1016/j.theriogenology.2008.06.025
  8. Furnus, C. C., D. G. de Matos, S. Picco, P. P. García, A. M. Inda, G.Mattioli and A. L. Errecalde. 2008. Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Anim. Reprod. Sci. 109:88-99. https://doi.org/10.1016/j.anireprosci.2007.12.003
  9. Gil, M. A., C. Almiñana, C. Cuello, I. Parrilla, J. Roca, J. M.Vázquez and E. A. Martinez. 2007. Brief coincubation of gametes in porcine in vitro fertilization: role of sperm:oocyte ratio and post-coincubation medium. Theriogenology 67:620-626. https://doi.org/10.1016/j.theriogenology.2006.09.022
  10. Gomez, E., P. Dugue, E. Diaz, N. Facal, I. Antolin, C. Hidalgo andC. Diez. 2002. Effects of acetoacetate and D-$\beta$-hydroxybutyrate on bovine in vitro embryo development in serum-free medium. Theriogenology 57:1551-1562. https://doi.org/10.1016/S0093-691X(02)00660-X
  11. Gosden, R. G., I. H. Sadler, D. Reed and R. H. F. Hunter. 1990.Characterization of ovarian follicular fluids of sheep, pigs and cows using proton nuclear magnetic resonance spectroscopy. Experimentia 46:1012-1015. https://doi.org/10.1007/BF01940658
  12. Haces, M. L., K. Hernández-Fonseca, O. N. Medina-Campos, T.Montiel, J. Pedraza-Chaverri and L. Massieu. 2008.Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp. Neurol. 211:85-96. https://doi.org/10.1016/j.expneurol.2007.12.029
  13. Hong, J. and E. Lee. 2007. Intrafollicular amino acid concentration and the effect of amino acids in a defined maturation medium on porcine oocyte maturation, fertilization, and preimplantation development. Theriogenology 68:728-735. https://doi.org/10.1016/j.theriogenology.2007.06.002
  14. Jain, S. K. and R. McVie. 1999. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 48:1850-1855. https://doi.org/10.2337/diabetes.48.9.1850
  15. Jarrett, S. G., J. B. Milder, L. P. Liang and M. Patel. 2008. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 106:1044-1051. https://doi.org/10.1111/j.1471-4159.2008.05460.x
  16. Jones, K. T. 2005. Mammalian egg activation: from $Ca^{2+}$spiking to cell cycle progression. Reprod. 130:813-823. https://doi.org/10.1530/rep.1.00710
  17. Kabine, M., M. S. El Kebbaj, A. Hafiani, N. Latruffe and M.Cherkaoui-Malki. 2003. Hibernation impact on the catalytic activities of the mitochondrial D-3-hydroxybutyrate dehydrogenase in liver and brain tissues of jerboa (Jaculus orientalis). BMC Biochem. 4:11. https://doi.org/10.1186/1471-2091-4-11
  18. Karja, N. W. K., K. Kikuchi, M. Fahrudin, M. Ozawa, T. Somfai,K. Ohnuma, J. Noguchi, H. Kaneko and T. Nagai. 2006. Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4:54. https://doi.org/10.1186/1477-7827-4-54
  19. Leroy, J. L. M. R., T. Vanholder, G. Opsomer, A. Van. Soom and A.de Kruif. 2006. The in vitro development of bovine oocytes after maturation in glucose and $\beta$-hydroxybutyrate concentrations associated with negative energy balance in dairy cows. Reprod. Domest. Anim. 41:119-123. https://doi.org/10.1111/j.1439-0531.2006.00650.x
  20. Luberda, Z. 2005. The role of glutathione in mammalian gametes. Reprod. Biol. 5:5-17.
  21. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
  22. Rodriguez-Gonzalez, E., M. Lopez-Bejar, M. J. Mertens and M. T.Paramio. 2003. Effects on in vitro embryo development and intracellular glutathione content of the presence of thiol compounds during maturation of prepubertal goat oocytes. Mol. Reprod. Dev. 65:446-453. https://doi.org/10.1002/mrd.10316
  23. Sakamoto, A., H. Iwata, H. Sato, T. Hayashi, T. Kuwayama and Y.Monji. 2006. Effect of modification of ovary preservation solution by adding glucose on the maturation and development of pig oocytes after prolonged storage. J. Reprod. Dev. 52: 669-674. https://doi.org/10.1262/jrd.17112
  24. Sutton, M. L., R. B. Gilchrist and J. G. Thompson. 2003. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9:35-48. https://doi.org/10.1093/humupd/dmg009
  25. Tatewaki, R., Y. Kagohashi and H. Otani. 2006. Analysis of polyploidy cells in mouse embryonic cells cultured under diabetic conditions. Congenit Anom (Kyoto), 46:149-154. https://doi.org/10.1111/j.1741-4520.2006.00118.x
  26. Tsuzuki, Y., K. Ikeuchi, H. Nabenishi and K. Ashizawa. 2009. Effect of $\beta$-hydroxybutyrate added to maturation medium on nuclear maturation of pig oocytes. J. Mamm. Ova Res. 26:153-158. https://doi.org/10.1274/jmor.26.153
  27. Viet Linh, N., T. Q. Dang-Nguyen, B. X. Nguyen, N. Manabe andT. Nagai. 2009. Effects of cysteine during in vitro maturation of porcine oocytes under low oxygen tension on their subsequent in vitro fertilization and development. J. Reprod. Dev. 55:594-598. https://doi.org/10.1262/jrd.09-075H
  28. Wang, W. H., L. R. Abeydeera, T. C. Cantley and B. N. Day. 1997.Effects of oocyte maturation media on development of pig embryos produced by in vitro fertilization. J. Reprod. Fertil. 111:101-108. https://doi.org/10.1530/jrf.0.1110101
  29. Whitaker, B. D. and J. W. Knight. 2004. Exogenous $\gamma$-glutamyl cycle compounds supplemented to in vitro maturation medium influence in vitro fertilization, culture, and viability parameters of porcine oocytes and embryos. Theriogenology 62:311-322. https://doi.org/10.1016/j.theriogenology.2003.10.014
  30. Yamanaka, K., S. Sugimura, T. Wakai, M. Kawahara and E. Sato.2009. Difference in sensitivity to culture condition between in vitro fertilized and somatic cell nuclear transfer embryos in pigs. J. Reprod. Dev. 55:299-304. https://doi.org/10.1262/jrd.20174
  31. Yoshioka, K., C. Suzuki and A. Onishi. 2008. Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54:208-213. https://doi.org/10.1262/jrd.20001