Association of CAST Gene Polymorphisms with Carcass and Meat Quality Traits in Chinese Commercial Cattle Herds

  • Li, Jiao (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Lu-Pei (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gan, Qian-Fu (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Li, Jun-Ya (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, Hui-Jiang (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Yuan, Zheng-Rong (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, Xue (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Chen, Jin-Bao (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Xu, Shang-Zhong (Institute of Animal Science, Chinese Academy of Agricultural Sciences)
  • Received : 2009.12.01
  • Accepted : 2010.03.21
  • Published : 2010.11.01


Calpastatin (CAST), an endogenous inhibitor of the calpains, plays an important role in post-mortem tenderization of meat. The objectives of this study were to investigate single nucleotide polymorphisms (SNPs) in the bovine CAST gene and association with carcass and meat quality traits. A total of 212 cattle from commercial herds were tested in this study including 2 pure introduced breeds, 4 cross populations, and 3 pure Chinese native breeds. Five SNPs were identified at position 2959 (A/G), 2870 (G/A), 3088 (C/T), 3029 (G/A) and 2857 (C/T) in the CAST gene (GenBank Accession No. AF159246). Allele frequencies of SNP2959 and SNP2870 were 0.701 (A) and 0.462 (A), respectively. A general linear model was used to evaluate the associations between the two markers and 7 traits. The results showed that both SNP2959 and SNP2870 were significantly (p<0.01) associated with the Warner-Bratzler shear force (WBSF), while they had no significant association with the other 6 traits in the whole population. However, in Chinese native pure breeds, only SNP2870 had significant association with WBSF (p<0.05). The simultaneous analysis of two-marker genotype effects indicated animals containing the A/G haplotype (A for SNP2959 and G for SNP2870) tended to have lower shear force than those containing the G/A haplotype, and, especially, animals homozygous for the A/G haplotype had approximately 2 kg lower shear force than those homozygous for the G/A haplotype (p<0.01). These results suggested that both markers may be effective for the marker-assisted selection of meat quality traits in Chinese commercial herds, especially SNP2870 which can be used for Chinese native cattle.


Calpastatin Gene;Carcass and Meat Quality Traits;Beef Cattle;SNPs


  1. Barendse, W. J. 2002. DNA markers for meat tenderness. WO/2002/064820.
  2. Bishop, M. D., M. Koohmaraie, J. Killefer and S. Kappes. 1993. Rapid communication: restriction fragment length polymorphisms in the bovine calpastatin gene. J. Anim. Sci. 71(8):2277.
  3. Busch, W. A., M. H. Stromer, D. E. Goll and A. Suzuki. 1972. $Ca^{2+}$-specific removal of Z lines from rabbit skeletal muscle. J. Cell Biol. 52(2):367-381.
  4. Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M.Koohmaraie, D. G. Riley, C. C. Chase, Jr., D. D. Johnson and T.P. Smith. 2006. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84(3): 520-525.
  5. Chung, H. Y., M. E. Davis and H. C. Hines. 1999. A DNA polymorphism of the bovine calpastatin gene detected by SSCP analysis. Anim. Genet. 30(1):80.
  6. Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, K. T. Lee,H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C.Cheong and T. H. Kim. 2006. Mapping of the porcine calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19(8):1085-1089.
  7. Davis, G. P., S. S. Moore, R. D. Drinkwater, W. R. Shorthose, I. D.Loxton, W. Barendse and D. J. Hetzel. 2008. QTL for meat tenderness in the M. longissimus lumborum of cattle. Anim. Genet. 39(1):40-45.
  8. Drinkwater, R. D., Y. Lenane, I. Lenane, G. P. Davis, R. Shorthose,B. E. Harrison, K. Richardson, D. Ferguson, R. Stevenson, J.Renaud, I. Loxton, R. J. Hawken, M. B. Thomas, S. Newman, D. J. S. Hetzel and W. Barendse. 2006. Detecting quantitative trait loci affecting beef tenderness on bovine chromosome 7 near calpastatin and lysyl oxidase. Aust. J. Exp. Agric. 46: 159-164.
  9. GeneNOTE 4. $GeneSTAR^{\circledR}$ Tenderness - The first commercial gene marker test for beef tenderness. http://www.genetic Accessed Dec. 04, 2006.
  10. Goll, D. E., V. F. Thompson, H. Li, W. Wei and J. Cong. 2003. The calpain system. Physiol Rev. 83:731-801.
  11. Goll, K. H. 1974. Letter: Tumor cells in bone marrow. Dtsch. Med. Wochenschr. 99(50):2587.
  12. Hughes, T. 2006. Regulation of gene expression by atternative untranslated regions. Trends Genet. 22:119-122.
  13. Juszczuk-Kubiak, E., J. Wyszynska-Koko, K. Wicinska and S. Rosochacki. 2008. A novel polymorphisms in intron 12 of the bovine calpastatin gene. Mol. Biol. Rep. 35(1):29-35.
  14. Koohmaraie, M. 1994. Muscle proteinases and meat aging. Meat Sci. 36:93-104.
  15. Koohmaraie, M., S. D. Shackelford, T. L. Wheeler, S. M.Lonergan and M. E. Doumit. 1995. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 73(12): 3596-3607.
  16. Li, Z., Z. Zhang, Z. He, W. Tang, T. Li, Z. Zeng, L. He and Y. Shi.2009. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis ( Cell Res. 19(4):519-23.
  17. Moon, S. S. 2006. The effect of quality grade and muscle on collagen contents and tenderness of intramuscular connective tissue and myofibrillar protein for Hanwoo beef. Asian-Aust. J. Anim. Sci. 19(7):1059-1064.
  18. Morris, C. A., N. G. Cullen, S. M. Hickey, P. M. Dobbie, B. A.Veenvliet, T. R. Manley, W. S. Pitchford, Z. A. Kruk, C. D.Bottema and T. Wilson. 2006. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey×Limousin, Angus and Hereford-cross cattle. Anim. Genet. 37(4):411-4144.
  19. Pringle, T. D., S. E. Williams, B. S. Lamb, D. D. Johnson and R. L.West. 1997. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbreed steers. J. Anim. Sci. 75:2955-2961.
  20. Richard, I., O. Broux, V. Allamand, F. Fougerousse, N.Chiannilkulchai, N. Bourg, L. Brenguier, C. Devaud, P.Pasturaud and C. Roudaut. 1995. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 81(1):27-40.
  21. Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Liand J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84(2):291-299.
  22. Shi, Y. Y. and L. He. 2005. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15(2): 97-98.
  23. Van Eenennaam, A. L., J. Li, R. M. Thallman, R. L. Quaas, M. E.Dikeman, C. A. Gill, D. E. Franke and M. G. Thomas. 2007. Validation of commercial DNA tests for quantitative beef quality traits. J. Anim. Sci. 85(4):891-900.

Cited by

  1. Association of CAST gene polymorphisms with carcass and meat quality traits in Yanbian cattle of China vol.40, pp.2, 2013,
  2. Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle vol.40, pp.2, 2013,
  3. Single nucleotide polymorphisms in caprine calpastatin gene vol.49, pp.4, 2013,
  4. Meat and nutritional quality comparison of purebred and crossbred pigs pp.13443941, 2017,