Effect of Using Organic Acids to Substitute Antibiotic Growth Promoters on Performance and Intestinal Microflora of Broilers

  • Hassan, H.M.A. (Department of Animal Production, National Research Center) ;
  • Mohamed, M.A. (Department of Animal Production, National Research Center) ;
  • Youssef, Amani W. (Department of Animal Production, National Research Center) ;
  • Hassan, Eman R. (Department of Poultry Diseases, National Research Center)
  • Received : 2010.03.09
  • Accepted : 2010.04.23
  • Published : 2010.10.01


A grower broiler experiment (from 14 to 35 days of age) was conducted to study the effect of using two commercial mixtures of organic acids (Galliacid$^{(R)}$ and Biacid$^{(R)}$) to substitute antibiotic growth promoter (Eneramycin$^{(R)}$) on performance, carcass characteristics and intestinal microflora. 400 (Ross 308) broiler chicks were used. A basal corn-soybean meal diet were formulated and served as a control treatment. The control diet was supplemented with either 0.06% Galliacid, 0.1% Biacid or 0.02% Eneramycin. Birds fed the Galliacid-supplemented diet had 16% (p<0.001) more gain than the control, while those fed the Biacid- or Enramycinsupplemented diets recorded 3 and 5.5% more gain, respectively. Organic acids mixtures and Enramycin supplementation significantly (p<0.001) improved feed conversion ratio. These results indicated that birds fed either organic acid mixtures or Enramycinsupplemented diets utilized feed more efficiently than those fed the control diet. Galliacid significantly (p<0.01) increased dressing percentage and bursa weight (% body weight). No significant differences were detected on liver, spleen and thymus (% body weight) among treatments. Galliacid or Biacid significantly (p<0.001) decreased intestinal Escherichia coli and Salmonella compared to the control and Enramycin-supplemented diets. Dietary Enramycin significantly (p<0.001) decreased Escherichia coli, but had no effect on Salmonella counts. In conclusion, organic acid mixtures are more efficient than antibiotic growth promoter (Enramycin) in improving broiler performance and decreasing intestinal Escherichia coli and Salmonella spp., and could be successfully used to substitute antibiotic growth promoters in broiler diets. However, not all of the organic acid mixtures gave the same effect either on performance or intestinal bacterial counts.


  1. Abd El-Hakim, A. S., G. Cherian and M. N. Ali. 2009. Use of organic acids, herbs and their combination to improve the utilization of commercial low protein broiler diets. Int. J. Poult. Sci. 8(1):14-20.
  2. Abdel-Fattah, S. A., M. H. El-Sanhoury, N. M. El-Mednay and F. Abdel-Azeem. 2008. Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. Int. J. Poult. Sci. 7(3):215-222.
  3. Amakye-amin, J., T. L. Lin, P. Y. Hester, D. Thiagarajan, P. A.Watkins and C. C. Wu. 2000. Ascorbic acid supplementation improved antibody response to infection bursal disease vaccination in chicks. Poult. Sci. 79:680-688.
  4. Ao, T., A. H. Cantor, A. J. Pescatore, M. J. Ford, J. L. Pierce and K.A. Dawson. 2009. Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poult. Sci. 88:111-117.
  5. Berchieri, A., Jr. and P. A. Barrow. 1996. Reduction in incidence of experimental fowl typhoid by incorporation of a commercial formic acid preparation ($Bio-Add^{TM}$) into poultry feed. Poult. Sci. 75:339-341.
  6. Brul, S. and P. Coote. 1999. Preservative agents in foods, mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50:1-17.
  7. Collins, C. H. and P. M. Lyne. 1984. Microbiological methods. Fifth Edition, Butterworth's, London, 331- 345.
  8. Cowan, W. D., A. Korsbak, T. Hastrup and P. B. Rasmussen. 1996.Influence of added microbial enzymes on energy and protein availability of selected feed ingredients. Anim. Feed Sci. Technol. 60:311-319.
  9. Denli, M., F. Okan and K. Celik. 2003. Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield. Pak. J. Nutr. 2:89-91.
  10. Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643.
  11. Duncan, D. B. 1955. Multiple range test and multiple F tests. Biometrics 11:1-42.
  12. Engberg, R. M., M. S. Hedemann, T. D. Leser and B. B. Jensen. 2000. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 79:1311-1319.
  13. Ferket, P. R. 2004. Alternatives to antibiotics in poultry production: response, practical experience and recommendations. In: Biotechnology in the Feed and Food Industry (Ed. T. P. Lyons and K. A. Jacques), Proceedings of Alltech’s 20th Annual Symposium, pp: 57-66. Nottingham University Press, UK.
  14. Fushimi, T., K. Tayama, M. Fukaya, K. Kitakoshi, N. Nakai, Y.Tsukamoto and Y. Sato. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131:1973-1977.
  15. Gauthier, R. 2002. Intestinal health, the key to productivity (The case of organic acids) XXVII Convention ANECA-WPDSA Puerto Vallarta, Jal. Mexico. 30 April 2002.
  16. Gornowicz, E. and K. Dziadek. 2002. The effects of acidifying preparations added to compound feeds on management conditions of broiler chickens. Ann. Anim. Sci. (Suppl. 1):93-96.
  17. Gunal, M., G. Yayli, O. Kaya, N. Karahan and O. Sulak. 2006. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int. J. Poult. Sci. 5(2):149-155.
  18. Gunes, H., H. Cerit and A. Altinel. 2001. Etlik piliclerin verim ozellikleri uzerine pre-probiotigin (Fermacto-500) etkisi. Ist. Univ. Vet. Fak. Derg. 27:217-229.
  19. Gustafson, R. H. and R. E. Bowen. 1997. Antibiotic use in animal agriculture. J. Appl. Micro. 83:531-541.
  20. Iba, A. M. and A. JR. Berchieri. 1995. Studies on the use of a formic acid propionic acid mixture ($Bio-add^{TM}$) to control experimental Salmonella infection in broiler chickens. Avian Pathol. 24:303-311.
  21. Islam, K. M. S., A. Schuhmacher, H. Aupperle and J. M. Gropp. 2008. Fumaric acid in broiler nutrition: a dose titration study and safety aspects. Int. J. Poult. Sci. 7(9):903-907.
  22. Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali and S. Jalaluddin.1998. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70:197-209.
  23. Katanbaf, M. N., E. A Dunington and P. B. Siegel. 1989. Restricted feeding in early and late feathering chickens, growth and physiological responses. Poult. Sci. 68:344-351.
  24. Kirchgessner, V. M. and F. X. Roth. 1988. Ergotrope effekte durch organische sauren in der ferkelaufzucht und schweinemast. Ubers. Tierernaehr, 16:93-108.
  25. Lee, M. D. 2005. Molecular basis for AGP effects in animals, p. 37-38. Antimicrobial Growth Promoters: Worldwide Ban on the Horizon. Noordwijk and Zee, the Netherlands, Jan 31-Feb 1.
  26. Mohamed, M. A., H. M. A. Hassan and E. M. A. El-Barkouky. 2008. Effect of mannan oligosaccharide on performance and carcass characteristics of broiler chicks. J. Agric. Soc. Sci. 4:13-17.
  27. Naidu, A. S. 2000. Natural food antimicrobial systems. CRC Press USA. pp. 431-462.
  28. National Research Council (NRC). 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy press, Washington, DC.
  29. Nayak, R. and P. B. Kenney. 2002. Screening of Salmonella isolates from a turkey production facility for antibiotic resistance. Poult. Sci. 81:1496-1500.
  30. Owens, B., L. Tucker, M. A. Collins and K. J. McCracken. 2008.Effects of different feed additives alone or in combination on broiler performance, gut microflora and ileal histology. Br. Poult. Sci. 49(2):202-212.
  31. Ratcliff, J. 2000. Antibiotic bans-a European perspective. Pages: 135-152 in Proceeding of the 47 Maryland Nutrition Conferences for Food the Manufacturers, March 22-24.
  32. Richards, J. D., J. Gong and C. F. M. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations and new technologies for ecological studies. Can. J. Anim. Sci. 85:421-435.
  33. Ricke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82:632-639.
  34. Runho, R. C., N. K. Sakomura, S. Kuana, D. Banzatto, O. M. Junoqueria and J. H. Stringhini. 1997. Uso do acido organico (acido fumarico) nas racoes de frangos de corte. Revista Brasileira de Zootecnia, 26:1183-1191.
  35. SAS Institute. 1990. $SAS^{\circledR}$/STAT User’s Guide: Statistics, Version 6, 4th edition. SAS Institute Inc, Cary, NC.
  36. Sohail, S. S. and D. A. Roland. 1999. Influence of supplemental phytase on performance of broilers four to six weeks of age. Poult. Sci. 78:550-555.
  37. Thompson, J. L. and M. Hinton. 1997. Antibacterial activity of formic and propionic acids in the diet of hens on salmonellas in the crop. Br. Poult. Sci. 38:59-65.
  38. Vlademirova, L. and S. Sourdjiyska. 1996. Test on the effect from adding probiotics to the combined feeds for chicks. J. Anim. Sci. 3:36-39.
  39. Waldroup, P. W., E. O. Oviedo-Rondon and C. A. Fritts. 2003. Comparison of Mos and antibiotic feeding programs in broiler diets containing copper sulfate. Int. J. Poult. Sci. 2:28-31.
  40. Weinack, O. M., C. F. Smyser and G. H. Soneyenbos. 1979. Evaluation of several methods of detecting salmonella in groups of chickens. Avian Dis. 23:179-193.
  41. Willis, W. L., O. S. Isikuemhen and S. A.Ibrahim. 2007. Performance assessment of broiler chickens given mashroom extract alone or in combination with probiotics. Poult. Sci. 86:1856-1860.
  42. Wolfenden, A. D., J. L. Vicente, J. P. Higgins, R. L. AndreattiFilho, S. E. Higgins, B. M. Hargis and G. Tellez. 2007. Effect of organic acids and probiotics on salmonella enteritidis infection in broiler chickens. Int. J. Poult. Sci. 6:403-405.
  43. Zhou, Y., Z. Jiang, D. Lv and T. Wang. 2009. Improved energyutilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poult. Sci. 88:316-322.
  44. Zou, X. T., X. J. Oiao and Z. R. Xu. 2006. Effect of $\beta$-mannanase (hemicell) on growth performance and immunity of broilers. Poult. Sci. 85:2176-2179.

Cited by

  1. Effect of the commercial product Lumance™, a combination of partly esterified organic acids and plant extracts, on the productive performance of broiler chickens vol.2, pp.2049-257X, 2014,
  2. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters vol.17, pp.spe, 2015,
  3. The Role of Coated Sodium Butyrate on Performance of Broilers Fed High Protein and Reduced Energy Diets vol.4, pp.2049-257X, 2016,
  4. Effects of Flavomycin, Bacillus licheniformis and Enramycin on Performance, Nutrient Digestibility, Gut Morphology and the Intestinal Microflora of Broilers vol.53, pp.2, 2016,
  5. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens vol.30, pp.5, 2017,
  6. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species pp.09312439, 2017,
  7. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens vol.102, pp.2, 2017,
  8. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate pp.1573-5168, 2018,
  9. Innovative drugs, chemicals, and enzymes within the animal production chain vol.49, pp.1, 2018,
  10. Effects of Organic Acids Supplement on Performance, Egg Traits, Blood Serum Biochemical Parameters and Gut Microflora in Female Japanese Quail (Coturnix coturnix japonica) vol.20, pp.1, 2018,