Effects of Castor Meal on the Growth Performance and Carcass Characteristics of Beef Cattle

  • Diniz, L.L. ;
  • Filho, S.C. Valadares ;
  • Campos, J.M.S. ;
  • Valadares, R.F.D. ;
  • Da Silva, L.D. ;
  • Monnerat, J.P.I.S. ;
  • Benedeti, P.B. ;
  • De Oliveira, A.S. ;
  • Pina, D.S.
  • Received : 2010.02.04
  • Accepted : 2010.03.07
  • Published : 2010.10.01


The purpose of this study was to evaluate the effect of replacing soybean meal with treated castor meal with (CMT) or without lime (CMNT) on the nutrient intake, performance, carcass characteristics, and yield of commercial cuts of beef cattle from a feedlot. Thirty male, castrated, crossbreed zebu cattle were used in the study, with an average initial weight of $360{\pm}30.27\;kg$. Five animals were used as a control group and were slaughtered at the beginning of the experiment; the remaining animals (n = 25) were distributed in random blocks (repetitions), with body weight as the criterion for block assignment. The animals were fed a diet containing 65% corn silage and 35% of concentrate on dry matter (DM) basis. Five diets consisted of four levels of soybean meal (SM) substituted with CMT (0, 33, 67 and 100%) on a DM basis and a diet with 100% of SM replaced with CMNT. At the end of the experiment, all animals were slaughtered, and their gastrointestinal tracts were emptied to determine their empty body weights (EBW). No significant effects were observed (p>0.05) for the substitution of soybean meal with CMT on intake of dietary nutrients, the average daily body weight gain (ADG) or EBW gain (EBWG). In spite of greater (p<0.05) ricin intake for the diet containing CMNT (3.06 mg/kg BW) compared to the CMT diet (0.10 mg/kg BW/d), there were no effects (p>0.05) on intake of dietary nutrients, ADG or EBWG. The average intake of DM and the ADG were 10,664.63 and 1,353.04 g/d, respectively. Regarding carcass characteristics, only carcass yield in relation to body weight was linearly reduced (p<0.05) upon substitution of SM by CMT. There was no effect (p>0.05) of the substitution of SM by CMT or CMNT on the yield of carcass basic cuts. CMT prices that are higher than 85% of the SM price do not economically justify the use of CMT. For CMT prices between 20 and 80% of the SM price, the optimal level was 67% substitution, while for prices below 15% of the SM price, the optimal level was 100% substitution with CMT. It can be concluded that treated castor meal with 6% lime can totally replace soybean meal in beef cattle diets.


Soybean Meal;Weight Gain;Yield;Ricin;Ricinus communis L.


  1. Alexander, J., D. Benford, A. Cocburn. 2008. Scientific opinion of the panel on contaminants in the food chain on a request from the European commission on ricin (from Ricinus communis) as undesirable substances in animal feed. The European Food Safety Authority Journal, 726:1-38.
  2. Association of Official Analytical Chemisty (AOAC). Official Methods of Analysis, 15th ed. AOAC International, Arlington.
  3. Bradford, M. M. 1976. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.
  4. Gardner Jr., H. K., E. L. D’aquin and S. P. Koultun. 1960. Detoxification and deallergenization of castor beans. J. Am. Oil Chem. Soc. 37:142-148.
  5. Hall, M. B. 2000. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. University of Florida. P.A-25 (Bulletin 339, April, 2000).
  6. Hankins, O. G. and P. E. Howe. 1946. Estimation of the composition of beef carcasses and cuts. [T.B.]: United Sates Department of Agriculture. p.1-19 (Technical Bulletin, USDA, 926).
  7. Kabat, E. A., M. Heidelberger and A. E. Bezer. 1947. A study of the purification and properties of ricin. J. Biol. Chem. 168:629-639.
  8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680-685.
  9. Lana, R. P., C. A. A. Fontes and C. A. C Morais. 1992. Predicao do peso de corpo vazio com base no peso de carcaca e peso vivo, em bovinos. In: Reuniao Anual da Sociedade Brasileira de Zootecnia, 29. Lavras. Anais. Lavras:SBZ. p. 165.
  10. Lehninger, A. L., D. L. Nelson and M. M. Cox. 1995. Princípios de Bioquimica. Traducao: Simoes, A.A.; Lodi, W.R.N. 2.ed. Sao Paulo: Sarvier.
  11. Licitra, G., T. M. Hernandez and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57(4):347-358.
  12. Luchiari Filho, A. 2000. Pecuaria da carne bovina. $1^a$ ed. - Sao Paulo: A. Luchiari Filho. p. 134.
  13. Mertens, D. R. 2002. Gravimetric determination of amylasetreated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. J. AOAC Int. 85:1217-1240.
  14. National Research Council (NRC). 1996. Nutrient requirements of beef cattle. 7. ed. Washington, DC, National Academy, 1996. p. 242.
  15. National Research Council (NRC). 2001. Nutrient Requirements of Dairy Cattle. 7. ed. Washington, DC, National Academy Press, 2001. p. 381.
  16. Oliveira, A. S., M. R. C. Oliveira and J. M. S. Campos. 2007. Eficacia de diferentes metodos de destoxificacao da ricina do farelo de mamona. In: II Congresso da Rede Brasileira de Tecnologia de Biodiesel, Brasilia. Anais. CD-ROM Brasilia: MCT/ABIPTI, p.1-6.
  17. Oliveira, A. S. 2008. Co-produtos da extracao de oleos de sementes de mamona e de girassol na alimentacao de ruminantes. Vicosa, MG, 2008. p. 165. Tese (Doutorado em Zootecnia), Universidade Federal de Vicosa.
  18. Orskov, E. R. and I. Mcdonald. 1979. Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503.
  19. Paulino, P. V. R., S. C. Valadares Filho and E. Detmann. 2006. Exigências nutricionais de zebuinos no Brasil. III. Minerais, In: Exigencias nutricionais de zebuinos e tabelas de composicao de alimentos (Ed. S. C. Valadares Filho, P. V. R. Paulino and K. A. Magalhaes). BR-CORTE. 1.ed., Vicosa : UFV, DZO, p. 85-94.
  20. Perone, J. C., A. Iachan and G. B. Domont. 1996. Contribuicao ao estudo da torta de mamona. Rio de Janeiro: Departamento de Imprensa Nacional. p. 51.
  21. PNPB (Programa Nacional De Producao E Uso De Biodiesel). 2005. Disponivel em:
  22. Russell, J. B. and J. M. Chow. 1993. Another theory for the action of ruminal buffer salts, decreased starch fermentation and propionate production. J. Dairy Sci. 76:826.
  23. SAS Institute. 2005. SAS system for windows: versao 9.0. Cary: SAS Institute.
  24. Severino, L. S. 2005. O que sabemos sobre a torta de mamona (In Portuguese, What we know about the cake of castor), p. 31. (Embrapa Algodao. Documentos, 134).
  25. SIFRECA (Sistemas De Informacoes De Fretes). 2009. Disponivel em:
  26. Sniffen, C. J., J. D. O’Connor and P. J. Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. J. Anim. Sci. 70(12):3562-3577.
  27. Valadares Filho, S. C., P. V. R. Paulino and R. F. D. Valadares. 2006a. Exigencias nutricionais de zebuinos no Brasil. II. Proteina, in: Exigencias nutricionais de zebuinos e tabelas de composicao de alimentos (Ed. S. C. Valadares Filho, P. V. R. Paulino and K. A. Magalhaes). BR-CORTE. 1.ed., Vicosa: UFV, DZO, p. 75-84.
  28. Valadares Filho, S. C., J. A. G. Azevedo and D. S. Pina. 2006b. Consumo de materia seca de bovinos Nelore e mesticos, In: Exigencias nutricionais de zebuínos e tabelas de composicao de alimentos (Ed. S. C. Valadares Filho, P. V. R. Paulino and K. A. Magalhaes). BR-CORTE. 1.ed., Vicosa: UFV, DZO, p. 1-12.
  29. Valadares Filho, S. C., P. V. R. Paulino and E. Detmann. 2006c. Exigencias nutricionais de zebuinos no Brasil. I. Energia, In: Exigencias nutricionais de zebuinos e tabelas de composicao de alimentos (Ed. S. C. Valadares Filho, P. V. R. Paulino and K. A. Magalhaes). BR-CORTE. 1.ed., Vicosa : UFV, DZO, p. 57-74.
  30. Valadares Filho, S. C., P. V. R. Paulino and K. A. Magalhaes. 2006d. Exigencias nutricionais de zebuinos e tabelas de composicao de alimentos. BR-CORTE. 1.ed., Vicosa : UFV, DZO, p. 142.
  31. Van Soest, P. J. and J. B. Robertson. 1985. Analysis of forages and fibrous feeds. A laboratory manual for animal science 613. Cornell University, Ithaca, New York, USA. p. 202.
  32. Waller, G. R. and S. S. Negi. 1958. Isolation of ricin, ricinine, and the allergenic fraction from castor seed pomace from two different sources. J. Am. Oil Chem. Soc. v.35, p. 409-412.

Cited by

  1. Performance and meat quality traits of beef heifers fed with two levels of concentrate and ruminally undegradable protein vol.43, pp.4, 2011,
  2. Productive performance and efficiency of utilization of the diet components in dairy cows fed castor meal treated with calcium oxide vol.41, pp.10, 2012,
  3. Castor beans hulls as a replacement for Tifton 85 hay in lamb diets vol.45, pp.5, 2013,
  4. L.) meal in animal feeding systems vol.100, pp.2, 2015,
  5. Performance and carcass characteristics of young cattle fed with soybean meal treated with tannins vol.87, pp.6, 2015,
  6. Fatty acid profile, meat quality, and carcass traits of Nellore young bulls fed different sources of forage in high-concentrate diets with crude glycerin vol.45, pp.4, 2016,
  7. Detoxified castor meal in substitution of soybean meal in sheep diet: growth performance, carcass characteristics and meat yield vol.48, pp.2, 2016,
  8. Replacement of soybean meal with treated castor bean meal in supplements for grazing lambs vol.18, pp.3, 2017,
  9. Feeding behavior of finishing goats fed diets containing detoxified castor meal, co-product of the biodiesel industry vol.49, pp.2, 2017,
  10. Fatty acid profile, carcass traits and meat quality of Nellore steers following supplementation with various lipid sources vol.57, pp.6, 2017,
  11. Advances in the utilisation of castor (Ricinus communis Linneo) seed meal as protein supplement in poultry diets pp.1572-9680, 2018,