DOI QR코드

DOI QR Code

Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens

  • Ahmed, A.S. (Department of Animal Science, College of Agriculture, Cairo University)
  • Received : 2009.10.21
  • Accepted : 2009.12.30
  • Published : 2010.08.01

Abstract

Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.

Keywords

Antibody Kinetics;Sheep Red Blood Cells;Brucella abortus;Interferon Gamma;Body Weight

References

  1. Blackwell, J. M., T. Goswami, C. A. W. Sibthorpe, N. Papo, J. K. White, S. Searle, E. N. Miller, C. S. Peacock, H. Mohammed and M. Ibrahim. 2001. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3:773-784. https://doi.org/10.1046/j.1462-5822.2001.00150.x
  2. Cellier, M., A. Belouchi and P. Gros. 1996. Resistance to intracellular infections: comparative genomic analysis of NRAMP. Trends Genet. 12:201-204. https://doi.org/10.1016/0168-9525(96)30042-5
  3. Cheeseman, J. H., M. G. Kaiser, C. Ciraci, P. Kaiser and S. J. Lamont. 2006. Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection. Dev. Comp. Immunol. 31: 52-60.
  4. Dil, N. and M. A. Qureshi. 2002. Differential expression of inducible nitric oxide synthase is associated with differential Toll-like receptor-4 expression in chicken macrophages from different genetic backgrounds. Vet. Immunol. Immunopathol. 84:191-207. https://doi.org/10.1016/S0165-2427(01)00402-0
  5. Hazkani-Covo, E., N. Altman, M. Horowitz, and D. Graur. 2002. The evolutionary history of Prosaposin: Two successive tandem-duplication events gave rise to the four saposin domains in vertebrates. J. Mol. Evol. 54:30-34. https://doi.org/10.1007/s00239-001-0014-0
  6. Janeway, C. A. and P. Travers. 1997. Immunobiology, The Immune System in Health and Disease, 3rd ed. Current Biology Ltd., London, UK.
  7. Kogut, M. H., L. Rothwell and P. Kaiser. 2005. IFN-gamma priming of chicken heterophils upregulates the expression of proinflammatory and Th1 cytokine mRNA following receptor-mediated phagocytosis of Salmonella enterica serova enteritidis. J. Interferon Cytokine Res. 25:73-81. https://doi.org/10.1089/jir.2005.25.73
  8. Kramer, J., M. Malek and S. J. Lamont. 2003. Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry. Anim. Genet. 34:339-348. https://doi.org/10.1046/j.1365-2052.2003.01027.x
  9. Lamont, S. J., M. G. Kaiser and W. Liu. 2002. Candidate genes for resistance to Salmonella enteritidis. Vet. Immunol. Immunopathol. 87:423-428. https://doi.org/10.1016/S0165-2427(02)00064-8
  10. Leveque, G., V. Forgetta, S. Morroll, A. L. Smith, N. Bumstead, P. Barrow, J. C. Loredo-Osti, K. Morgan and D. Malo. 2003. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica Serovar Typhimurium infection in chicken. Infect. Immun.71:1116-1124. https://doi.org/10.1128/IAI.71.3.1116-1124.2003
  11. Liu, W., M. G. Kaiser and S. J. Lamont. 2003. Natural resistance-associated macrophage protein1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chickens. Poult. Sci. 82:259-266. https://doi.org/10.1093/ps/82.2.259
  12. Liu, W. and S. J. Lamont. 2003. Candidate gene approach: potentional association of Capase-1, Inhibitor of Apoptosis Protein-1, and Prosaposin gene polymorphism with response to Salmonella enteritidis challenge or vaccination in young chicks. Anim. Biotechnol. 14:61-76. https://doi.org/10.1081/ABIO-120022136
  13. Lochmiller, R. L. and C. Deerenberg. 2000. Trade-offs in evolutionary immunology: Just what is the cost of immunity? OIKOS. 88:87-98. https://doi.org/10.1034/j.1600-0706.2000.880110.x
  14. Malek, M., J. R. Hasenstein and S. J. Lamont. 2004. Analysis of chicken TLR4, CD28, MIF, MD-2, and LITAF genes in a Salmonella enteritidis resource population. Poult. Sci. 83:544-549. https://doi.org/10.1093/ps/83.4.544
  15. Martin, A., E. A. Dunnington, W. B. Gross, W. E. Briles, R. W. Briles and P. B. Siegel. 1990. Production traits and alloantingen systems in lines of chickens selected for high or low antibody response to sheep erythrocytes. Poult. Sci. 69:871-878. https://doi.org/10.3382/ps.0690871
  16. Mashaly, M. M., M. J. W. Heetkamp, H. K. Parmentier and J. W. Schrama. 2000. Influence of genetic selection for antibody production aginst sheep red cells on energy metabolism in laying hens. Poult. Sci. 79:519-524. https://doi.org/10.1093/ps/79.4.519
  17. Rothschild, M. F. and M. Soller. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.
  18. Siegel, P. B. and W. B. Gross. 1980. Production and persistence of antibody in chicken to sheep erythrocytes. 1. Directional selection. Poult. Sci. 59:1-5. https://doi.org/10.3382/ps.0590001
  19. Soller, M. and L. Andersson. 1998. Genomic approaches to the improvement of disease resistance in farm animals. Rev. Sci. Tech. 17:329-345.
  20. Wiegend, S., N. Mielenz and S. J. Lamont. 1997. Application of nonlinear regression function to evaluate the kinetics of antibody response to vaccine in chicken lines divergently selected for multitrait immune response. Poult. Sci. 76:1248-1255. https://doi.org/10.1093/ps/76.9.1248
  21. Werling, D. and T. W. Jungi. 2003. Toll-like receptors linking innate and adaptive immune response. Vet. Immunol. Immunopathol. 91:1-12. https://doi.org/10.1016/S0165-2427(02)00228-3
  22. Wong, G., B. Liu, J. Wang, Y. Zhang, X. Yang, Z. Zhang, Q. Meng, J. Zhou, D. Li, J. Zhang, P. Ni, S. Li, L. Ran, H. Li, R. Li, H. Zheng, W. Lin, G. Li, X. Wang, W. Zhoa, J. Li, C. Ye, M. Dai, J. Ruan, Y. Zhou, Y. Li, X. He, X. Huang, W. Tong, J. Chen, J. Ye, C. Chen, N. Wei, L. Dong, F. Lan, Y. Sun, Z. Yang, Y. Yu, Y. Huang, D. He, Y. Xi, D. Wei, Q. Qi, W. Li, J. Shi, M. Wang, F. Xie, X. Zhang, P. Wang, Y. Zhao, N. Li, N. Yang, W. Dong, S. Hu, C. Zeng, W. Zheng, B. Hao, L. W. Hillier, S. P. Yang, W. C. Warren, R. K. Wilson, M. Brandstrom, H. Ellegren, R. P. Crooijmans, J. J. van der Poel, H. Bovenhuis, M. A. Groenen, I. Ovcharenko, L. Gordon, L. Stubbs, S. Lucas, T. Glavina, A. Aerts, P. Kaiser, L. Rothwell, J. R. Young, S. Rogers, B. A. Walker, A. van Hateren, J. Kaufman, N. Bumstead, S. J. Lamont, H. Zhou, P. M. Hocking, D. Morrice, D. J. de Koning, A. Law, N. Bartley, D. W. Burt, H. Hunt, H. H. Cheng, U. Gunnarsson, P. Wahlberg, L. Andersson, K. Institutet, E. Kindlund, M. T. Tammi, B. Andersson, C. Webber, C. P. Ponting, I. M. Overton, P. E. Boardman, H. Tang, S. J. Hubbard, S. A. Wilson, J. Yu and H. Yang. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717-722. https://doi.org/10.1038/nature03156
  23. Ye, X., S. Avendano, J. C. M. Dekkers and S. J. Lamont. 2006. Association of twelve immune-telated genes with performance of three broiler lines in two different hygiene environments. Poult. Sci. 85:1555-1568. https://doi.org/10.1093/ps/85.9.1555
  24. Zhou, H., A. J. Buitenhuis, S. Weigend and S. J. Lamont. 2001. Candidate gene promoter polymorphisms and antibody response kinetic in chicken: interferon-gamma, interleukin-2, and immunoglobulin light chain. Poult. Sci. 80:1679-1689. https://doi.org/10.1093/ps/80.12.1679
  25. Zhou, H. and S. J. Lamont. 2003a. Chicken MHC class I and II gene effects on antibody response kinetic in adult chicken. Immunogenetics 55:133-140. https://doi.org/10.1007/s00251-003-0566-9
  26. Zhou, H. and S. J. Lamont. 2003b. Association of six candidate genes with antibody response kinetic in hens. Poult. Sci. 82:1118-1126. https://doi.org/10.1093/ps/82.7.1118
  27. Zhou, H., H. S. Lillehoj and S. J. Lamont. 2002. Associations of $interferon-{\gamma}$ genotype and protein level with antibody response kinetics in chickens. Avian Dis. 46:869-876. https://doi.org/10.1637/0005-2086(2002)046[0869:AOIGAP]2.0.CO;2

Cited by

  1. Polymorphism detection of promoter region of IFN-$$\gamma $$γ and IL-2 genes and their association with productive traits in Mazandaran native breeder fowls vol.97, pp.4, 2018, https://doi.org/10.1007/s12041-018-0981-1