DOI QR코드

DOI QR Code

Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR

  • Tu, Yunjie (Poultry Institute, Chinese Academy of Agricultural Sciences) ;
  • Su, Yijun (Poultry Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Kehua (Poultry Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Xueyu (Poultry Institute, Chinese Academy of Agricultural Sciences) ;
  • Tong, Haibing (Poultry Institute, Chinese Academy of Agricultural Sciences) ;
  • Gao, Yushi (Poultry Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2009.11.03
  • Accepted : 2010.02.11
  • Published : 2010.08.01

Abstract

This study was to detect the expression of heart fatty acid-binding protein (H-FABP) and adipocyte fatty acid-binding protein (A-FABP) gene mRNA in different tissues of Rugao and Luyuan chickens at 56 d and 120 d by real-time fluorescence quantitative reverse transcription polymerase-chain reaction (FQ-RT-PCR). The primers were designed according to the sequences of HFABP, A-FABP and GAPDH genes in Gallus gallus, which were used as target genes and internal reference gene, respectively. The levels of H-FABP and A-FABP gene expression were detected by SYBR Green I FQ-RT-PCR. The relative H-FABP and A-FABP gene mRNA expression level was calculated with 2-$^{{\Delta}Ct}$. Melting curve analysis showed a single peak of three genes. Intramuscular fat (IMF) content in breast muscle and leg muscle of the two chicken breeds at 120 d was higher than at 56 d. IMF content in breast muscle and leg muscle at 56 d and 120 d in Luyuan was significantly higher than in Rugao, however, abdominal fat of Luyuan was significantly lower than that of Rugao. The relative H-FABP gene mRNA expression level in cardiac muscle was the highest in both chicken breeds. The relative H-FABP and A-FABP gene expression of different tissues in Luyuan was higher than in Rugao. H-FABP gene mRNA expression had a negative effect on IMF of leg and breast muscles, and was significantly negatively correlated with IMF content. The relative A-FABP gene mRNA level in abdominal fat was higher than in liver. The A-FABP gene mRNA was not expressed in leg, breast and cardiac muscles. A-FABP gene mRNA expression level was significantly positively correlated with abdominal fat and had a significant effect on abdominal fat but not IMF content.

Keywords

Gene Expression;Fluorescent Quantitative Reverse PCR;A-FABP Gene;H-FABP Gene;Chicken

References

  1. Aguero, M., A. Sanchez, E. San Miguel, C. Gomez-Tejedor and M. A. Jimenez-Clavero. 2007. A real-time TaqMan RT-PCR method for neuraminidase type 1 (N1) gene detection of H5N1 Eurasian strains of avian influenza virus. Avian Dis. 51:378-381. https://doi.org/10.1637/7642-050306R.1
  2. Cho, E. S., D. H. Park, B. W. Kim, W. Y. Jung, E. J. Kwon and C. W. Kim. 2009. Association of GHRH, H-FABP and MYOG polymorphisms with economic traits in pigs. Asian-Aust. J. Anim. Sci. 22(3):307-312. https://doi.org/10.5713/ajas.2009.70748
  3. Chen, K. W., Y. J. Tu and S. J. Zhang. 2006. Analysis on genetic variation of adipocyte fatty acid binding protein gene in different chicken breeds. Acta Veterinaria et Zootechnica Sinica. 37(11):1114-1117.
  4. Fisher, R. M., P. Eriksson and J. Hoffstedt. 2001. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals. Diabetologia Oct. 44(10):1268-1273. https://doi.org/10.1007/s001250100643
  5. Gerbens, F., A. J. Erp and F. L. Harders. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. Anim. Sci. 77(4):846-852.
  6. Gerbens, F., A. Jansen and A. J. Erp. 1998. The adipocyte fatty acid binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm. Genome 9:1022-1026. https://doi.org/10.1007/s003359900918
  7. Gerbens, F., F. J. Verburg and H. Moerkerk. 2001. Intramuscular fat content in pigs associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79:347-354.
  8. Hovenier, R., E. Kanis, T. Van Asseldonk,and N. G. Westerink. 1992. Genetic parameters of pig meat quality traits in a halothane negative population. Livest. Prod. Sci. 32:309-321. https://doi.org/10.1016/0301-6226(92)90002-L
  9. Hovenier, R., E. Kanis, T. Van Asseldonk and N. G. Westerink. 1993. Breeding for pig meat quality in halothane negative populations. Pig News Info. 14:17-25.
  10. Houng, H. H., D. Hritz and N. Kanesa-thasan. 2000. Quantitative detection of dengue 2 virus using fluorogenic RT-PCR based on 3 noncoding sequence. J. Virol. Methods 86:1-11. https://doi.org/10.1016/S0166-0934(99)00166-4
  11. Murphy, C., M. Mc Gurk, J. Pettigrew, A. Santinelli, R. Mazzucchelli, P. G. Johnston, M. R. Ontironi and D. J. Waugh. 2005. Nonapical and cytoplasmic expression of interleukin, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate can cer. Clin. Cancer Res. 11:4117-4127. https://doi.org/10.1158/1078-0432.CCR-04-1518
  12. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28(2):161-176. https://doi.org/10.1186/1297-9686-28-2-161
  13. Nade, T., S. Hirabara, T. Okumura and K. Fujita. 2003. Effects of vitamin A on carcass composition concerning younger steer fattening of Wagyu cattle. Asian-Aust. J. Anim. Sci. 16:353-358. https://doi.org/10.5713/ajas.2003.353
  14. Okumura, T., K. Saito, H. Sakuma, T. S. Nade, S. Nakayama, K. Fujita and T. Kawamura. 2007. Intramuscular fat deposition in principal muscles from twenty-four to thirty months of age using identical twins of Japanese Black steers. J. Anim. Sci. 1902-1907.
  15. Schaap, F. G., B. Binas, H. Danneberg. 1999. Impaired long-chain fatty acid utilization by ardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res. 85:329-337. https://doi.org/10.1161/01.RES.85.4.329
  16. Schena, M., D. Shalon and R.W. Dads. 1995. Quantitative monitoring of gene expression pattems with a complementary DNA microarray. Science 270(5325):467. https://doi.org/10.1126/science.270.5235.467
  17. Shaw, A. E., S. M. Reid, K. Ebert, G. H. Hutchings, N. P. Ferris and D. P. King. 2007. Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. J. Virol. Methods 143:81-85. https://doi.org/10.1016/j.jviromet.2007.02.009
  18. Tu, Y. J., K. W. Chen, S. J. Zhang, Q. P. Tang, Y. S. Gao, H. F. Li and Y. J. Su. 2004. Research on single nucleotide polymorphism of adipocyt fatty acid binding protein gene in three chicken breeds. Journal of Yangzhou University ( Agricultural and Life Science edition). 25(4):44-47.
  19. Tu, Y. J., K. W. Chen, S. J. Zhang, Q. P. Tang, Y. S. Gao and N. Yang. 2006. Genetic diversity of Chinese 14 indigenous grey goose breeds based on microsatellite markers. Asian-Aust. J. Anim. Sci. 19(1):1-6.
  20. Uemoto, Y., K. Suzuki, E. Kobayashi, S. Sato, T. Shibata, H. Kadowaki and A. Nishida. 2007. Effects of heart fatty acidbinding protein genotype on intramuscular fat content in Duroc pigs selected for meat production and meat quality traits. Asian-Aust. J. Anim. Sci. 20(5):622-626. https://doi.org/10.5713/ajas.2007.622
  21. Veerkamp, J. H. and R. G. H. J. Maatman. 1995. Cytoplasmic fatty acid binding proteins: Their structure and genes. Prog. Lipid Res. 34:17-52. https://doi.org/10.1016/0163-7827(94)00005-7
  22. Veerkamp, J. H. and H. T. B. Van Moerkerk. 1993. Fatty acidbinding protein and its relation to fatty acid oxidation. Mol. Cell Biochem. 123:101-106. https://doi.org/10.1007/BF01076480
  23. Vogel-Hertzel, A. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab. 11:175-180. https://doi.org/10.1016/S1043-2760(00)00257-5
  24. Wang, Y., D. M. Shu, L. Li, H. Qu, C. F. Yang and Q. Zhu. 2007. Identification of single nucleotide polymorphism of H-FABP gene and its association with fatness traits in chickens. Asian-Aust. J. Anim. Sci. 20(2):1812-1819. https://doi.org/10.5713/ajas.2007.1812
  25. Xu, C. L., Y. Z. Wang, Y. H. Huang, J. X. Liu and J. Feng. 2007. Postnatal expression pattern of adipose type fatty acid binding protein in different adipose tissues of porcine. Asian-Aust. J. Anim. Sci. 20(6):811-816. https://doi.org/10.5713/ajas.2007.811
  26. Ye, M. H., H. H. Cao, J. Wei. 2003. RFLPs at Heart and Adipocyte fatty acid binding protein genes in Beijing oil chicken and Dwarf chicken. Acta Veterinaria et Zootechnica Sinica. 34(5):422-426.
  27. Yin, J. L., N. A. Shackel and A. Zekry. 2001. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) for measumment of cytokine and growth factor mRNA expression with fluomgenic probes or SYBR Green I. Immunol. Cell Biol. 79(3):213. https://doi.org/10.1046/j.1440-1711.2001.01002.x
  28. Yuan, J. M., Y. M. Guo, Y. Yang and ZH. Wang. 2007. Characterization of fatty acid digestion of Beijing Fatty and Arbor Acres Chickens. Asian-Aust. J. Anim. Sci. 20(8):1222 - 1228. https://doi.org/10.5713/ajas.2007.1222
  29. Zhang, J. M., N. Y. Jin and Z. Q. Min. 2004. Determination of expression level of BRDT in normal and cacerby real-time quantitative RT-PCR. Chin. J. Biological. 17(3):139-141.

Cited by

  1. Polymorphisms of the IL8 gene correlate with milking traits, SCS and mRNA level in Chinese Holstein vol.38, pp.6, 2011, https://doi.org/10.1007/s11033-010-0528-x
  2. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken vol.28, pp.10, 2015, https://doi.org/10.5713/ajas.14.0886
  3. Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0067-y
  4. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken vol.28, pp.1, 2017, https://doi.org/10.1080/10495398.2016.1194288