Photosynthesis, Antioxidant Enzyme, and Anatomical Difference of Sedum kamtschaticum and Hosta longipes to Ozone

오존이 기린초와 비비추의 광합성, 항산화효소, 해부학적 구조에 미치는 영향

  • Cheng, Hyo-Cheng (Department of Environmental Horticulture, University of Seoul) ;
  • Woo, Su-Young (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Seong-Han (Department of Environmental Horticulture, University of Seoul) ;
  • Baek, Saeng-Geul (Department of Environmental Horticulture, University of Seoul)
  • 정효정 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과) ;
  • 이성한 (서울시립대학교 환경원예학과) ;
  • 백생글 (서울시립대학교 환경원예학과)
  • Received : 2009.03.11
  • Accepted : 2010.02.28
  • Published : 2010.06.30


The objective of this study was to identify the effects of ozone on the two species in controlled environment. $Sedum$ $kamtschaticum$ and $Hosta$ $longipes$ were exposed in both control and ozone chamber to investigate photosynthesis, antioxidant enzyme activity, visible damage, the number and the size of stomata and the plastogloubuli. Ozone was fumigated in the concentration of $200{\mu}g{\cdot}kg^{-1}$ for 8 hours in a day (from 08:00 AM to 04:00 PM). Firstly, net photosynthesis of two species was decreased after ozone fumigation. Secondly, glutathione reductase activities showed significant difference between control and ozone treatment. Thirdly, visible symptoms of leaves were expressed such as chlorosis, necrosis and decoloration. Also, the size of stoma was significantly decreased in ozone-exposed plants. Furthermore, the intercellular space of $Hosta$ $longipes$ showed increased phenomenon because the mesophyll was collapsed. The number and the size of the plastogloubuli were significantly larger in ozone stress.

이 연구의 도심 녹화 수종으로 가장 많이 이용되는 기린초($Sedum$ $kamtschaticum$)와 비비추($Hosta$ $longipes$)를 대상으로 오존에 의해 나타나는 광합성률, 항산화 효소활성, 해부학적 차이를 구명하기 위하여 수행되었다. 오존을 하루 8시간씩(08:00-16:00) $200{\mu}g{\cdot}kg^{-1}$ 처리하였다. 대조구를 설정하고 광합성률, 항산화 효소활성, 해부학적 특성(기공, 플라스토글로블리의 크기 등)을 조사하였다. 그 결과, 오존처리 후 측정된 순광합성량은 두 식물 종에서 감소하였고 호흡률은 증가하였다. 오존처리 후 비비추의 경우 glutathione reductase의 활성이 통계적으로 유의하게 증가하였다. 기린초와 비비추는 황화, 백화 및 반점 등의 전형적인 오존 피해 증상을 나타내었다. 오존 처리후 기린초와 비비추의 단위면적당 기공의 수는 증가하였으며, 기공크기는 유의성 있게 감소하였다. 대기오염에 피해 받은 식물에서 관찰 할 수 있는 플라스토글로블리의 수가 기린초와 비비추에 있어 유의성 있게 증가하고 그 직경도 증가하였다.



Supported by : 한국연구재단


  1. Anttonen, S. and L.Karenlampi. 1996. Slightly elevated ozone exposure causes cell structural changes in needles and roots of Scots pine. Trees 10:207-217.
  2. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-39.
  3. Ashmore, M.R. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28:949-964.
  4. Brehelin, C., F. Kessler, and K.J. Wijk. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 12:260-266.
  5. Bussotti, F., R. Tognelli, G. Montagni, F. Borghini, P. Bruschi, and C.Tani. 2003. Reponse of Quercus pubescens leaves exposed to geothermal pollutant input in southern Tuscany (Italy). Environ. Pollut. 121:349-361.
  6. Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387.
  7. Calatayud, A., J.W. Ramirez, D.J. Iglesias, and E. Barreno. 2002. Effects of ozone on photosynthetic $CO_{2}$ exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol. Plant. 116:308-316.
  8. Chernikova, T., J.M. Robinson, E.H. Lee, and L. Mulchi. 2000. Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosyn. Res. 64:15-26.
  9. Ferdinand, J.A., T.S. Fredericksen, K.B. Kouterick, and J.M. Skelly. 2000. Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) seedlings. Environ. Pollut. 108:297-302.
  10. Fuhrer, J., L. Skarby, and M.R. Ashmore. 1997. Critical levels for ozone effects on vegetation in Europe. Environ. Pollut. 97:91-106.
  11. Gerosa, G., S. Cieslik, and A. Ballarin-Denti. 2003. Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmospheric Environ. 37:777-788.
  12. Gunthardt-Georg, M.S., R.Matyssek, C. Scheidegger, and T. Keller. 1993. Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees 7:104-114.
  13. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17:287-291.
  14. Krupa, S., M.T. McGrath, C.P. Andersen, F.L. Booker, K.O. Burkey, A.H. Chappelka, B.I. Chevone, E.J. Pell, and B.A. Zilimskas. 2001. Ambient ozone and plant health. Plant Dis. 85:4-12.
  15. Lee, J.C., C.S. Kim, S.H. Han, and P.G. Kim. 2004. Stomatal and photosynthetic responses of Betula species exposed to ozone. Kor. J. Agr. For. Meteorol. 6:11-17.
  16. Lee, J.C., C.Y. Oh, S.H. Han, and P.G. Kim. 2005. Changes on photosynthesis and SOD activity in Platanus orientalis and Liriodendron tulipifera accoding to ozone exposing period. Kor. J. Agr. For. Meteorol. 7:156-163.
  17. Lee, J.C., S.H. Han, K.W. Kwon, S.Y. Woo, and J.H. Choi. 2003. Changes of photosynthetic pigment contents and SOD activity in the leaves of four tree species exposed to $SO_{2}$. Kor. J. Agr. For. Meteorol. 5:18-23.
  18. Lee, J.C., S.H. Han, S.S. Jang, K.J. Cho, and Y.Y. Kim. 2002. Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Kor. J. Agr. For. Meteorol. 4:72-79.
  19. Lee, S.H., E.J. Hahn, and K.Y. Park. 2008. Nitrogen source and sucrose concentration in the medium affect indian ginseng (Withania domniefera) cultures in vitro. Kor. J. Hort. Sci. Technol. 26:306-312.
  20. Loreto, F., M. Mannozzi, C. Maris, P. Nascetti, F. Ferranti, and S. Pasqualini. 2001. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant physiol. 126:993-1000.
  21. Lyons, T., J.H. Ollerenshaw, and J.D. Barnes. 1999. Impacts of ozone on Plantago major: apoplastic and symplastic antioxidant status. New Phytologists 141:253-263.
  22. Mikkelsen, T.N. and H.S. Heide-Jorgensen. 1996. Acceleration of leaf senescence in Fagus sylvatica L. by low levels of tropospheric ozone demonstrated by leaf colour, chlorophyll fluorescence and chloroplast ultrastructure. Trees 10:145-156.
  23. Miyake, H., H. Matsumura, Y. Fujinuma, and T. Tosuka. 1989. Effects of low concentrations of ozone on the fine structure of radish leaves. New Phytol. 111:187-195.
  24. Novak, K., J.M. Skelly, M. Schaub, N. Krauchi, C. Hug, W. Landolt, and P. Bleuler. 2003. Ozone air pollution and foliar injury development on native plants of Switzerland. Environ. Pollut. 125:41-52.
  25. Oksanen, E., J. Sober, and D.F. Karnosky. 2001. Impacts of elevated $CO_{2}$ and / or $O_{3}$ on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ. Pollot. 115:437-446.
  26. Park, E.H., J.K. Kim, J.C. Lee, and S.H. Han. 2002. Photosynthetic pigment concentrations and change of SOD activities on liana, Equisetum arvense and Artemisia princeps exposure to ozone. Kor. J. Agr. For. Meteorol. 4:159-163.
  27. Paakkonen, E., J. Vahala, M. Pohjola, T. Holopainen, and L. Karenlampi. 1998a. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress. Plant Cell Environ. 21:671-684.
  28. Paakkonen, E., M.S. Gunthardt-Goerg, and T. Holopainen. 1998b. Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Ann. Bot. 82:49-59.
  29. Paakkonen, E., T. Holopainen, and L. Karenlampi. 1995a. Ageing-related anatomical and ultrastructural changes in leaves of Birch (Betula pendula Roth.) clones as affected by low ozone exposure. Ann. Bot. 75:285-294.
  30. Paakkonen, E., T. Holopainen, and L. Karenlampi. 1995b. Effects of ozone on birch (Betula pendula Roth.) clones. Water, Air, Soil Pollut. 85:1331-1336.
  31. Paakkonen, E., T. Holopainen, and L. Karenlampi. 1997. Differences in growth, leaf senescence and injury, and stomatal density in Birch (Betula pendula Roth.) in relation to ambient levels of ozone on Finland. Environ. Pollut. 96:117-127.
  32. Rinnan, R. and T. Holopainen. 2004. Ozone effects on the ultrastructure of peatland plants: Sphagnum Mosses, Vaccinium oxycoccs, Andromeda polifolia and Eriophorum vaginatum. Ann. Bot. 94:623-634.
  33. Ryang, S.Z. and S.Y. Woo. 2008. Stomata density and size of Acer palmatum to the elevated ozone. J. Kor. For. Soc. 97:552-554.
  34. Ryang, S.Z., S.Y. Woo, and S.M. Je. 2007. Antioxidant enzyme, chlorophyll contents and stomatal changes of five tree species under ozone stress. J. Kor. For. Soc. 96:470-476.
  35. Reig-Arminana, J., V. Calatayud, J. Cervero, F.J. Garcia-Breijo, A. Ibars, and M.J. Sanz. 2004. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environ. Pollut. 132:321-331.
  36. Sant'Anna-Santos, B. F., L.C. Silva, A.A. Azevedo, and R. Aguiar. 2006. Effects of simulated acid rain on leaf anatomy and micromorphology of Genipa Americana L. (Rubiaceae). Brazilian Archives of Biology and Technol. 49:313-321.
  37. Scebba, F., G. Soldatini, and A. Ranieri. 2003. Ozone differentially affects physiological and biochemical responses of two clover species; Trifolium repens and Trifolium pretense. Environ. Pollut. 123:209-216.
  38. Schraudner, M., W. Moeder, C. Wiese, W.V. Camp, D. Inze, C. Langebartels, and H. Sandermann Jr. 1998. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. The Plant Journal 16:235-245.
  39. Severino, J.F., K. Stich, and G. Doja. 2007. Ozone stress and antioxidant substances in Trifolium repens and Centraurea jacea leaves. Environmental Pollution 146:707-714.
  40. Strohm, M., M. Elblmeier, C. Langebartels, L. Jouanin, A. Polle, H. Sandermann and H. Rennenberg. 2002. Responses of antioxidative systems to acute ozone stress in transgenic poplar $(Populus tremula {\times} P_{{\cdot}} alba)$ over-expressing glutathione synthetase or glutathione reductase. Trees 16:262-273.
  41. Vandermeiren, K., C. Black, H. Pleijel, and L.D. Temmerman. 2005. Impact of rising tropospheric ozone on potato: effects on photosynthesis, growth, productivity and yield quality. Plant Cell Environ. 28:982-996.
  42. Woo, S.Y., S.H. Lee, K.W. Kwon, and J.C. Lee. 2004a. Chlorophyll contents and glutathione reductase activity of Ailanthus altissima, Liriodendron tulipifera and Platanus occidentails seedling to the ozone exposure. J. Kor. For. Soc. 93:423-427.
  43. Woo, S.Y., S.H. Lee, K.W. Kwon, J.C. Lee, and J.H. Choi. 2004b. Growth, photosynthesis, and ascorbate peroxidase activity of several species to the ozone exposure. J. Kor. For. Soc. 93:409-414.
  44. Woo, S.Y., S.H. Lee, and D.S. Lee. 2004c. Air pollution effects on the photosynthesis and chlorophyll contents of street trees in seoul. Kor. J. Agr. For. Meteorol. 6:24-29.
  45. Youn, S.C. 1999. Ozone effects on plants- the responses of two aspen clones to chronic and dynamic exposures. Kor. Soc. Atmo. Environ. 1:87-91.