Evaluation of Electrochemical Stability and Performance of Graphite Sheets as Current Collectors for Lead Acid Battery

납축전지 전류집전체로서 그라파이트 시트의 전기화학적 안정성과 방전성능 평가

  • 안상용 (세방하이테크 기술연구소) ;
  • 김응진 (세방하이테크 기술연구소) ;
  • 윤연섭 (세방하이테크 기술연구소) ;
  • 김희중 (세방전지 기술팀)
  • Received : 2010.04.02
  • Accepted : 2010.05.11
  • Published : 2010.05.31


Graphite sheet electro-deposited with lead was evaluated as a possible candidate for current collectors of lead acid batteries. Cyclic voltammetry was performed on the materials to evaluate the electrochemical properties. The graphite sheet electro-deposited with lead is electrochemically stable in the cathodic potential sweep. However, in the anodic potential sweep, the graphite sheet electro-deposited with lead is electrochemically unstable due to the oxygen evolution and the intercalation of sulfuric acid. Lead acid batteries were prepared by using a graphite sheet and a cast grid as current collectors for anode and performance test using those batteries was carried out. A lead acid battery with graphite sheets showed higher capacity and energy density than a conventional lead acid battery with cast grid.

납축전지 전류 집전체로서의 가능성을 보기위해 납 도금된 그라파이트 시트를 적용하여 평가하였다. 전기화학적 특성을 평가하기 위해 순환 전압전류법을 실시하였다. 납 도금된 그라파이트 시트는 납축전지의 음극으로 운용되는 전압범위에서 전기화학적으로 안정하였으나, 양극으로 운용되는 전압범위에서는 산소발생과 황산의 인터칼레이션으로 인해 전기화학적으로 불안정하였다. 납 도금된 그라파이트와 주조된 납 기판을 음극 전류집전체로 사용하여 전지를 제작하고, 방전 성능을 평가하였다. 납 도금된 그라파이트 시트를 적용한 납축전지가 금속 납 전류 집전체를 적용한 전지보다 더 높은 용량을 나타내었고, 에너지밀도 또한 더 높았다.



  1. Y. Nakagama, K. Kishimoto, S. Sugiyama, and S. Sakaguchi, ‘Micro-structural design and function of an improved absorptive glass mat(AGM) separator for valve-regulated lead-acid batteries’ J. Power Sources, 107, 192 (2002).
  2. S. S. Mira, T. M. Noveske, S. OL. Maraz, and A. J. Williamson, ‘The role of recombination catalysts in VRLA cells’ J. Power Sources, 95, 162 (2001).
  3. S. M. Tabaatabaai, M. S. Rahmanifar, S. A. Mousavi, et al. ‘Lead-acid batteries with foam grids’ J. Power Sources, 158, 879 (2006).
  4. M. L. Soria, J. Fullea, F. Saez et al. ‘Lead-acid batteries with polymer-structured electrodes for electric-vehicle applications’ J. Power Sources, 78, 220 (1999).
  5. T. Juergens and R. F. Nelson, ‘A new high-rate, fast-charge lead/acid battery’ J. Power Sources, 53, 201 (1995).
  6. M. Lushina, Y. Kamenev, V. Leonov et al. ‘Use of expanded copper mesh grid for negative electrodes of sealed lead storage batteries’ J. Power Sources, 148, 95 (2005).
  7. C. S. Dai, B. Zhang, D. L. Wang et al. ‘Preparation and performance of lead foam grid for negative electrode of VRLA battery’ Mater. Chem. Phys., 99, 431 (2006).
  8. B. Hariprakash and S. A. Gaffor, ‘Lead-acid cells with lightweight, corrosion-protected, flexible -graphite grids’ J. Power Sources, 173, 565 (2007).
  9. A. Czerwinski and M. Zelazowska, ‘Electrochemical behavior of lead deposited on reticulated vitreous carbon’ J. Electroanal. Chem., 410, 55 (1996).
  10. A. Czerwinski and M. Zelazowska, ‘Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon (RVC)’ J. Power Sources, 64, 29 (1997).
  11. E. Gyenge, J. Jung, and B. Mahato, ‘Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges’ J. Power Sources, 113, 388 (2003).
  12. Y. I. Jang, N. J. Dudney, and T. N. Tiegs, ‘Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries’ J. Power Sources, 161, 1392 (2006).
  13. Y. Chen, B. Z. Chen, and X. C. Shi, ‘Preparation and electrochemical properties of pitch-based carbon foam as current collectors for lead acid batteries’ Electochimica Acta, 53, 2245 (2008).

Cited by

  1. Characteristics of Redox Flow Battery Using the Soluble Lead Electrolyte vol.14, pp.4, 2011,