Flexible smart sensor framework for autonomous structural health monitoring

Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo

  • 투고 : 2009.11.13
  • 심사 : 2010.02.18
  • 발행 : 2010.07.25


Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.


smart sensor network;structural health monitoring;full-scale bridge monitoring;service-oriented architecture;Imote2


  1. Arms, S.W., Galbreath, J.H., Newhard, A.T. and Townsend, C.P. (2004), "Remotely reprogrammable sensors for structural health monitoring", Proceedings of the Structural Materials Technology (SMT): NDE/NDT for Highways and Bridges, Buffalo, NY, September.
  2. Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr., B.F. and Seo, J. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: data analysis", Smart Struct. Syst., 6(5-6), 461-480.
  3. Colibrys Inc. (2007), Si-Flex SF1500S Accelerometer, Neuchatel, Switzerland.
  4. Crossbow Technology, Inc. (2007a), Imote2 Hardware Reference Manual, Available at Support/Support_pdf_files/Imote2_Hardware_Reference_Manual.pdf.
  5. Crossbow Technology, Inc. (2007b), ITS400 - Imote2 Basic Sensor Board, Available at Products/productdetails.aspx?sid=261.
  6. Gu, T., Pung, H.K. and Zhang, D.Q. (2005), "A service-oriented middleware for building context-aware services", J. Netw. Comput. Appl., 28(1), 1-18.
  7. Hogenauer, E.B. (1981), "An economical class of digital filters for decimation and interpolation", IEEE Trans. Acoust., Speech, Signal Processing, 29(2), 155-162.
  8. Hui, J., Ren, Z. and Krogh, B.H. (2003), "Sentry-based power management in wireless sensor networks", Proceedings of the '03 Information Processing in Sensor Networks, Second International Workshop, Palo Alto, CA, USA, April.
  9. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr., B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459.
  10. Kurata, N., Saruwatari, S. and Morikawa, H. (2006), "Ubiquitous Structural Monitoring using Wireless Sensor Networks", Proceedings of the '06 International Symposium on Intelligent Signal Processing and Communication Systems, Tokyo, December.
  11. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E. and Culler, D. (2005), TinyOS: An Operating System for Sensor Networks, Ambient Intelligence (Ed. Weber, W., Rabaey, J.M., Aarts, E.), Springer Berlin Heidelberg.
  12. Liu, J. and Zhao, F. (2005), "Towards semantic services for sensor-rich information systems", Proceedings of the International Workshop on Broadband Advanced Sensor Networks, Boston, MA, October.
  13. Mechitov, K., Razavi, R. and Agha, G. (2007), "Architecture Design Principles to Support Adaptive Service Orchestration in WSN Applications", ACM SIGBED Review, 4(3), 37-42.
  14. Nagayama, T. and Spencer, Jr., B.F. (2007), Structural health monitoring using smart sensors, NSEL Report Series 001, University of Illinois at Urbana-Champaign, Available at 2142/3521.
  15. Nagayama, T., Rice, J.A. and Spencer, Jr., B.F. (2006), "Efficacy of Intel's Imote2 wireless sensor platform for structural health monitoring applications", Proceedings of the Asia-Pacific Workshop on Structural Health Monitoring, Yokohama, Japan.
  16. Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, Jr., B.F. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320.
  17. Pakzad, S.N., Fenves, G.L., Kim, S. and Culler, D.E. (2008), "Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring", J. Infrastruct. Syst., 14(1), 89-101.
  18. Quickfilter Technologies, Inc. (2007), QF4A512 4-Channel Programmable Signal Conditioner, Allen, TX.
  19. Rice, J.A. and Spencer, Jr., B.F. (2009), Flexible Smart Sensor Framework for Autonomous Full-scale Structural Health Monitoring, NSEL Report Series 018, University of Illinois at Urbana-Champaign, Available at http://
  20. Rice, J.A., Mechitov, K.A., Sim, S.H., Spencer, Jr., B.F. and Agha, G. (2010), "Enabling Framework for Structural Health Monitoring Using Smart Sensors", Struct. Control Health Monit., Published Online, Available at
  21. Silicon Designs, Inc. (2007), Model 1221 Low Noise Analog Accelerometer, Issaquah, WA.
  22. Sim, S.H. and Spencer, Jr., B.F. (2009), Decentralized Strategies for Monitoring Structures using Wireless Smart Sensor Networks, NSEL Report Series, 019, University of Illinois at Urbana-Champaign, Available at http://
  23. Singh, M.P. and Huhns, M.N. (2005), Service-Oriented Computing: Semantics, Processes, Agents, John Wiley and Sons, New Jersey.
  24. STMicroelectronics (2008), LIS344ALH - ultracompact MEMS inertial sensor high performance 3-axis ${\pm}$2/${\pm}$6g ultracompact linear accelerometer, Available at
  25. Tsai, W.T. (2005), "Service-Oriented System Engineering: A New Paradigm", Proceedings of the IEEE International Workshop on Service-Oriented System Engineering, October.
  26. Wang, L. and Xiao, Y. (2006), "A Survey of Energy-Efficient Scheduling Mechanisms in Sensor Networks", Mobile Netw. Appl., 11(5), 723-740.
  27. Whelan, M.J and Janoyan, K.D. (2009), "Design of a Robust, High-rate Wireless Sensor Network for Static and Dynamic Structural Monitoring", J. Intel. Mat. Syst. Str., 20(7), 849-863.
  28. Ye, W., Heidemann, J. and Estrin, D. (2002), "An energy-efficient MAC protocol for wireless sensor networks", Proceedings of the 21st Conference of the IEEE Computer and Communications Societies (INFOCOM), New York, NY, USA.

피인용 문헌

  1. 1. Active Wireless System for Structural Health Monitoring Applications vol.17, pp.12, 2017, doi:10.12989/sss.2010.6.5_6.423
  2. 2. Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection vol.8, pp.9, 2012, doi:10.12989/sss.2010.6.5_6.423
  3. 3. Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique vol.12, pp.3_4, 2013, doi:10.12989/sss.2010.6.5_6.423
  4. 4. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications vol.16, pp.12, 2016, doi:10.12989/sss.2010.6.5_6.423
  5. 5. Long-Term Vibration Monitoring of Cable-Stayed Bridge Using Wireless Sensor Network vol.9, pp.11, 2013, doi:10.12989/sss.2010.6.5_6.423
  6. 6. Vibration testing of a steel girder bridge using cabled and wireless sensors vol.5, pp.3, 2011, doi:10.12989/sss.2010.6.5_6.423
  7. 7. Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges vol.17, pp.5, 2016, doi:10.12989/sss.2010.6.5_6.423
  8. 8. Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, doi:10.12989/sss.2010.6.5_6.423
  9. 9. Multiple Two-Way Time Message Exchange (TTME) Time Synchronization for Bridge Monitoring Wireless Sensor Networks vol.17, pp.5, 2017, doi:10.12989/sss.2010.6.5_6.423
  11. 11. Internet-Enabled Wireless Structural Monitoring Systems: Development and Permanent Deployment at the New Carquinez Suspension Bridge vol.139, pp.10, 2013, doi:10.12989/sss.2010.6.5_6.423
  12. 12. Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices vol.51, pp.9S1, 2012, doi:10.12989/sss.2010.6.5_6.423
  13. 13. Middleware and communication technologies for structural health monitoring of critical infrastructures: A survey vol.56, 2018, doi:10.12989/sss.2010.6.5_6.423
  14. 14. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope vol.26, pp.10, 2017, doi:10.12989/sss.2010.6.5_6.423
  15. 15. Survey on robotics and automation technologies for civil infrastructure vol.13, pp.6, 2014, doi:10.12989/sss.2010.6.5_6.423
  16. 16. Data-Efficient Quickest Change Detection with On–Off Observation Control vol.31, pp.1, 2012, doi:10.12989/sss.2010.6.5_6.423
  17. 17. SnowFort: An Open Source Wireless Sensor Network for Data Analytics in Infrastructure and Environmental Monitoring vol.14, pp.12, 2014, doi:10.12989/sss.2010.6.5_6.423
  18. 18. Comparison of Visual Inspection and Structural-Health Monitoring As Bridge Condition Assessment Methods vol.30, pp.3, 2016, doi:10.12989/sss.2010.6.5_6.423
  19. 19. Full-scale experimental validation of decentralized damage identification using wireless smart sensors vol.21, pp.11, 2012, doi:10.12989/sss.2010.6.5_6.423
  20. 20. An Autonomous Strain-Based Structural Monitoring Framework for Life-Cycle Analysis of a Novel Structure vol.2, 2016, doi:10.12989/sss.2010.6.5_6.423
  21. 21. A Recent Research Summary on Smart Sensors for Structural Health Monitoring vol.19, pp.3, 2015, doi:10.12989/sss.2010.6.5_6.423
  22. 22. Survey and Introduction to the Focused Section on Mechatronics for Sustainable and Resilient Civil Infrastructure vol.18, pp.6, 2013, doi:10.12989/sss.2010.6.5_6.423
  23. 23. Remote structural health monitoring systems for next generation SCADA vol.11, pp.5, 2013, doi:10.12989/sss.2010.6.5_6.423
  24. 24. RTEA: Real-Time and Energy Aware Routing for Industrial Wireless Sensor Networks vol.95, pp.4, 2017, doi:10.12989/sss.2010.6.5_6.423
  25. 25. A decentralized receptance-based damage detection strategy for wireless smart sensors vol.21, pp.5, 2012, doi:10.12989/sss.2010.6.5_6.423
  26. 26. Dynamic and static structural displacement measurement using backscattering DC coupled radar vol.16, pp.3, 2015, doi:10.12989/sss.2010.6.5_6.423
  27. 27. Efficient multihop communication for static wireless sensor networks in the application to civil infrastructure monitoring vol.21, pp.4, 2014, doi:10.12989/sss.2010.6.5_6.423
  28. 28. Smart wireless sensing and assessment for civil infrastructure vol.10, pp.4, 2014, doi:10.12989/sss.2010.6.5_6.423
  29. 29. An algorithm based on two-step Kalman filter for intelligent structural damage detection vol.22, pp.4, 2015, doi:10.12989/sss.2010.6.5_6.423
  30. 30. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings vol.16, pp.12, 2016, doi:10.12989/sss.2010.6.5_6.423
  31. 31. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications vol.23, pp.8, 2014, doi:10.12989/sss.2010.6.5_6.423
  32. 32. Traffic Safety Evaluation for Railway Bridges Using Expanded Multisensor Data Fusion vol.31, pp.10, 2016, doi:10.12989/sss.2010.6.5_6.423
  33. 33. Numerical Investigations into the Value of Information in Lifecycle Analysis of Structural Systems vol.2, pp.3, 2016, doi:10.12989/sss.2010.6.5_6.423
  34. 34. Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders vol.17, pp.6, 2016, doi:10.12989/sss.2010.6.5_6.423
  35. 35. Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation vol.15, pp.2, 2015, doi:10.12989/sss.2010.6.5_6.423
  36. 36. Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, doi:10.12989/sss.2010.6.5_6.423
  37. 37. Development of a Wireless Displacement Measurement System Using Acceleration Responses vol.13, pp.12, 2013, doi:10.12989/sss.2010.6.5_6.423
  38. 38. Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring vol.15, pp.6, 2015, doi:10.12989/sss.2010.6.5_6.423
  39. 39. Development of Flexible Cotton-Polystyrene Sensor for Application as Strain Gauge vol.16, pp.24, 2016, doi:10.12989/sss.2010.6.5_6.423
  40. 40. Cluster-based optimal wireless sensor deployment for structural health monitoring 2017, doi:10.12989/sss.2010.6.5_6.423
  41. 41. Develoment of high-sensitivity wireless strain sensor for structural health monitoring vol.11, pp.5, 2013, doi:10.12989/sss.2010.6.5_6.423
  42. 42. A wireless smart sensor network for automated monitoring of cable tension vol.23, pp.2, 2014, doi:10.12989/sss.2010.6.5_6.423
  43. 43. System identification of an in-service railroad bridge using wireless smart sensors vol.15, pp.3, 2015, doi:10.12989/sss.2010.6.5_6.423
  44. 44. An active mass damper system for structural control using real-time wireless sensors vol.19, pp.8, 2012, doi:10.12989/sss.2010.6.5_6.423
  45. 45. Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings vol.22, pp.11, 2013, doi:10.12989/sss.2010.6.5_6.423
  46. 46. Unique Activity-Meter with Piezoelectric Poly(vinylidene difluoride) Films and Self Weight of the Sensor Nodes vol.52, pp.9S1, 2013, doi:10.12989/sss.2010.6.5_6.423
  47. 47. Piezoelectric MEMS switch to activate event-driven wireless sensor nodes vol.22, pp.9, 2013, doi:10.12989/sss.2010.6.5_6.423
  48. 48. Contactless load monitoring in near-field with surface localized spoof plasmons—A new breed of metamaterials for health of engineering structures vol.244, 2016, doi:10.12989/sss.2010.6.5_6.423
  49. 49. Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response vol.25, pp.1, 2012, doi:10.12989/sss.2010.6.5_6.423
  50. 50. Proof of concept of wireless TERS monitoring vol.24, pp.12, 2017, doi:10.12989/sss.2010.6.5_6.423
  51. 51. Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder vol.15, pp.4, 2015, doi:10.12989/sss.2010.6.5_6.423
  52. 52. Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes vol.32, pp.6, 2012, doi:10.12989/sss.2010.6.5_6.423
  53. 53. Feasibility Study of Micro-Wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge vol.5, pp.12, 2012, doi:10.12989/sss.2010.6.5_6.423
  54. 54. A migration-based approach towards resource-efficient wireless structural health monitoring vol.27, pp.4, 2013, doi:10.12989/sss.2010.6.5_6.423
  55. 55. System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network vol.11, pp.5, 2013, doi:10.12989/sss.2010.6.5_6.423
  56. 56. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration 2017, doi:10.12989/sss.2010.6.5_6.423
  57. 57. Enabling Reliable and Network-Wide Wakeup in Wireless Sensor Networks vol.15, pp.3, 2016, doi:10.12989/sss.2010.6.5_6.423
  58. 58. System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction vol.22, pp.2, 2015, doi:10.12989/sss.2010.6.5_6.423
  59. 59. Vibration-based Structural Health Monitoring of Full-Scale Cable-Stayed Bridges Using Wireless Smart Sensors vol.12, pp.1, 2012, doi:10.12989/sss.2010.6.5_6.423
  60. 60. Resource-efficient wireless sensor network architecture based on bio-mimicry of the mammalian auditory system vol.26, pp.1, 2015, doi:10.12989/sss.2010.6.5_6.423
  61. 61. Real-time remote monitoring: the DuraMote platform and experiments towards future, advanced, large-scale SCADA systems vol.11, pp.4, 2015, doi:10.12989/sss.2010.6.5_6.423
  62. 62. Next Generation Wireless Smart Sensors Toward Sustainable Civil Infrastructure vol.171, 2017, doi:10.12989/sss.2010.6.5_6.423
  63. 63. Smart infrastructure: an emerging frontier for multidisciplinary research vol.170, pp.1, 2017, doi:10.12989/sss.2010.6.5_6.423
  64. 64. Vision-based remote 6-DOF structural displacement monitoring system using a unique marker vol.13, pp.6, 2014, doi:10.12989/sss.2010.6.5_6.423
  65. 65. Railroad bridge monitoring using wireless smart sensors vol.24, pp.2, 2017, doi:10.12989/sss.2010.6.5_6.423
  66. 66. An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors vol.180, 2012, doi:10.12989/sss.2010.6.5_6.423
  67. 67. Wireless structural health monitoring of stay cables under two consecutive typhoons vol.1, pp.1, 2014, doi:10.12989/sss.2010.6.5_6.423
  68. 68. Review of Energy Harvesters Utilizing Bridge Vibrations vol.2016, 2016, doi:10.12989/sss.2010.6.5_6.423


연구 과제 주관 기관 : National Science Foundation