Development of SNP Markers for Domestic Pork Traceability

국내산 돼지고기의 원산지 검증을 위한 SNP Marker Set 개발

  • Kim, Sang-Wook (Department of Animal Science, Chungbuk National University) ;
  • Li, Xiaoping (Department of Animal Science, Chungbuk National University) ;
  • Lee, Yun-Mi (School of Biotechnology, Yeungnam University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Kim, Tae-Hun (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Bong-Hwan (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • 김상욱 (충북대학교 농업생명환경대학 축산학과) ;
  • 이소평 (충북대학교 농업생명환경대학 축산학과) ;
  • 이윤미 (영남대학교 생명공학부) ;
  • 김종주 (영남대학교 생명공학부) ;
  • 김태헌 (농촌진흥청 국립축산과학원) ;
  • 최봉환 (농촌진흥청 국립축산과학원) ;
  • 김관석 (충북대학교 농업생명환경대학 축산학과)
  • Received : 2009.11.09
  • Accepted : 2010.02.11
  • Published : 2010.04.30


The purpose of the study was to develop an optimum SNP marker set to be utilized for domestic pork traceability. The study tested 51 SNP markers analyzed for origin of farm to be determined from genotypes of offspring and parents in pigs. With the simulation data through random mating population (PI), half sib mating population ($PI_{half-sib}$) and full sib mating population ($PI_{sibs}$), probability of identical genotypes were analyzed as $5.63{\times}10^{-33}$, $4.35{\times}10^{-15}$ and $1.32{\times}10^{-15}$, respectively. The 51 SNP markers also had 100% accuracy for parental determination. These results suggest that if the pig breeding stock is genotyped with the 51 SNP markers, the genotype information of individual offspring can be checked for farm origins by tracing parental sow and sire. Therefore, these SNP markers will be useful to trace the pork from production to consumption in pigs.


Pig breeding;SNPs;Pork origin;Parentage analysis


Grant : 돼지고기 원산지 판별기술 개발

Supported by : 농림수산식품기술기획평가원


  1. Anderson, E. C. and Garza., J. C. 2006. The power of singlenucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567-2582.
  2. Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 15:263-265.
  3. Baruch, E. and Weller, J. I. 2008. Estimation of the number of SNP genetic markers required for parentage verification. Anim. Genet. 39:474-479.
  4. Dodds, K. G., Tate, M. L. and Sise, J. A. 2005. Genetic evaluation using parentage information from genetic markers. J. Anim. Sci. 83:2271-2279.
  5. Eenennaam, A. L. V., Weaber, R. L., Drake, D. J., Penedo, M. C. T., Quaas, R. L., Garrick, D. J. and Pollak, E. J. 2007. DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting. J. Anim. Sci. 85:3159-3169.
  6. Gomez-Raya, L., Priest, K., Rauw, W. M., Okomo-Adhiambo, M., Thain, D., Bruce, B., Rink, A., Torell, R., Grellman, L., Narayanan, R. and Beattie, C. W. 2008. The value of DNA paternity identification in beef cattle: Examples from Nevada's free-range ranches. J. Anim. Sci. 86:17-24.
  7. Heaton, M. P., Harhay, G. P., Bennett, G. L., Stone, R. T., Grosse, W. M., Casas, E., Keele, J. W., Smith, T. P. L., Chitko- McKown, C. G. and Laegreid, W. W.. 2002. Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mamm. Genome 13:272-281.
  8. Hill, W. G., Salisbury, B. A. and Webb, A. J. 2008. Parentage identification using SNP genotypes: application to product tracing. J. Anim. Sci. 86:2508-2517.
  9. Honda, T., Katsuta, T. and Mukai, F. 2009. Simulation Study on Parentage Analysis with SNPs in the Japanese Black Cattle Population. Asian-Aust. J. Anim. Sci. 10:1351-1358.
  10. Jones, A. G. 2005. GERUD2.0: A computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol. Ecol. Notes. 5:708.
  11. Kaul, R., Singh, A., Vijh, R. K., Tantia, M. S. and Behl, R. 2001. Evaluation of the genetic variability of 13 microsatellite markers in native Indian pigs. J. Genet. 80:149-153.
  12. Li, X. P., Hu, Z. L., Moon, S. J., Do, K. T., Ha, Y. K., Kim, H., Byun, M. J., Choi, B. H., Rothschild, M. F., Reecy, J. M. and Kim, K. S. 2008. Development of an in silico coding gene SNP map in pigs. Anim. Genet. 10:1365-2052.
  13. Lim, H. T., Seo, B. Y., Jung, E. J., Yoo, C. K., Zhong T., Cho, I. C., Yoon, D. H., Lee, J. G. and Jeon, J. T. 2009. Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. K. J. Anim Sci & Tech. 3:201-206.
  14. Rohrer, G. A., Freking, B. A. and Nonneman, D. 2007. Single nucleotide polymorphisms for pig identification and parentage exclusion. Anim. Genet. 38:253-258.
  15. Stephens, M. and Donnelly, P. 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73:1162-1169.
  16. Storm, N. 2003. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol. 212:241-262.
  17. Tang, K. 2003. Single nucleotide polymorphism analyses by MALDITOF MS. Int. J. Mass. Spec. 226:37-54.
  18. Thompson, C. L., Baechle, D., Lu, Q., Mathew, G., Song, Y., Iyengar, S. K., Gray-McGuire, C. and Goddard, K. A. 2005. Effect of genotyping error in model-free linkage analysis using microsatellite or single-nucleotide polymorphism marker maps. BMC. Genet. 6:S153.
  19. Ulgen, A. and Li, W. 2005. Comparing single-nucleotide polymorphism marker-based and microsatellite marker-based linkage analyses. BMC. Genet. 10:1471-2156.
  20. Werner, F. A. O., Durstewitz, G., Habermann, F. A., Thaller, G., Krämer, W., Kollers, S., Buitkamp, J., Georges, M., Brem, G., Mosner, J. and Fries, R. 2004. Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim. Genet. 35:44-49.
  21. 농림수산식품부. 2008. 농림수산 식품 통계연보

Cited by

  1. Genetic Composition of Korean Native Chicken Populations - National Scale Molecular Genetic Evaluation Based on Microsatellite Markers vol.38, pp.2, 2011,