Hypoxia Induces Paclitaxel-Resistance through ROS Production

  • Oh, Jin-Mi (Department of Bioscience and Biotechnology, Sejong University) ;
  • Ryu, Yun-Kyoung (Department of Bioscience and Biotechnology, Sejong University) ;
  • Lim, Jong-Seok (Department of Biological Sciences, Sookmyung Women's University) ;
  • Moon, Eun-Yi (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2010.01.27
  • Accepted : 2010.02.24
  • Published : 2010.04.30


Oxygen supply into inside solid tumor is often diminished, which is called hypoxia. Many gene transcriptions were activated by hypoxia-inducible factor (HIF)-$1{\alpha}$. Here, we investigated the effect of hypoxia on paclitaxel-resistance induction in HeLa cervical tumor cells. When HeLa cells were incubated under hypoxia condition, HIF-$1{\alpha}$ level was increased. In contrast, paclitaxel-mediated tumor cell death was reduced by the incubation under hypoxia condition. Paclitaxel-mediated tumor cell death was also inhibited by treatment with DMOG, chemical HIF-$1{\alpha}$ stabilizer, in a dose-dependent manner. A significant increase in intracellular ROS level was detected by the incubation under hypoxia condition. A basal level of cell density was increased in response to 10 nM $H_2O_2$. HIF-$1{\alpha}$ level was increased by treatment with various concentration of $H_2O_2$. The increased level of HIF-$1{\alpha}$ by hypoxia was reduced by the treatment with N-acetylcysteine (NAC), a well-known ROS scavenger. Paclitaxel-mediated tumor cell death was increased by treatment with NAC. Taken together, these findings demonstrate that hypoxia could play a role in paclitaxel-resistance induction through ROS-mediated HIF-$1{\alpha}$ stabilization. These results suggest that hypoxia-induced ROS could, in part, control tumor cell death through an increase in HIF-$1{\alpha}$ level.


  1. Belaiba, R. S., Bonello, S., Zahringer, C., Schmidt, S., Hess, J., Kietzmann, T. and Gorlach, A. (2007). Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol. Biol. Cell 18, 4691-4697.
  2. Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C. and Chandel, N. S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409-414.
  3. Chan, D. A., Krieg, A. J., Turcotte, S. and Giaccia, A. J. (2007). HIF gene expression in cancer therapy. Methods Enzymol. 435, 323-345.
  4. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U. S. A. 95, 11715-11720.
  5. Denizot, F. and Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277.
  6. Dong, J. E. H. and Shin, C. Y. (2008). Vasorelaxing effect of hypoxia via Rho-kinase inhibition on the agonist-specific vasoconstriction. Biomol. & Ther. 16, 249-254.
  7. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4-6.
  8. Gao, N., Shen, L., Zhang, Z., Leonard, S. S., He, H., Zhang, X. G., Shi, X. and Jiang, B. H. (2004). Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol. Cell Biochem. 255, 33-45.
  9. Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U. and Schumacker, P. T. (2005). Mitochondrial complex III is required for hypoxiainduced ROS production and cellular oxygen sensing. Cell Metab. 1, 401-408.
  10. Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. and Schumacker, P. T. (2008). Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen speciesdependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell Biol. 28, 718-731.
  11. Han, Y. H., Kwon, J. H., Yu, D. Y. and Moon, E. Y. (2006). Inhibitory effect of peroxiredoxin II (Prx II) on Ras-ERK-NFkappaB pathway in mouse embryonic fibroblast (MEF) senescence. Free Radic. Res. 40, 1182-1189.
  12. Hockel, M. and Vaupel, P. (2001). Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266-276.
  13. Horwitz, S. B. (1994). Taxol (paclitaxel): mechanisms of action. Ann. Oncol. 5(Suppl 6), S3-6.
  14. Huang, L. E., Gu, J., Schau, M. and Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U. S. A. 95, 7987- 7992.
  15. Janssen-Heininger, Y. M., Poynter, M. E. and Baeuerle, P. A. (2000). Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic. Biol. Med. 28, 1317-1327.
  16. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. and Neckers, L. (2003). Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J. Biol. Chem. 278, 7445-7452.
  17. Kaelin, W. G. Jr. (2005). ROS: really involved in oxygen sensing. Cell Metab. 1, 357-358.
  18. Ke, Q. and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469-1480.
  19. Kim, H. S. and Moon, E. Y. (2009). Reactive oxygen species-induced expression of B cell activating factor (BAFF) is independent of toll-like receptor 4 and myeloid differentiation primary response gene 88. Biomol. & Ther. 17, 144-150.
  20. Kim, H. S., Oh, J. M., Jin, D. H., Yang, K. H. and Moon, E. Y. (2008). Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production. Pharmacology 81, 317-324.
  21. Liu, L. Z., Hu, X. W., Xia, C., He, J., Zhou, Q., Shi, X., Fang, J. and Jiang, B. H. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41, 1521-1533.
  22. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T. and Simon, M. C. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 1, 393-399.
  23. Martin, V. (1993). Overview of paclitaxel (TAXOL). Semin. Oncol. Nurs. 9, 2-5.
  24. Maulik, N. and Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33, 1047-1060.
  25. Moon, E. Y. (2008). Serum deprivation enhances apoptoticcell death by increasing mitochondrial enzyme aActivity. Biomol. & Ther. 16, 1-8.
  26. Oh, J. M., Ryoo, I. J., Yang, Y., Kim, H. S., Yang, K. H. and Moon, E. Y. (2008). Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin beta-4 (TB4) in Hela cervical tumor cells. Cancer Lett. 264, 29-35.
  27. Oh, S. Y., Song, J. H., Gil, J. E., Kim, J. H., Yeom, Y. I. and Moon, E. Y. (2006). ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance. Exp. Cell Res. 312, 1651-1657.
  28. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197.
  29. Rowinsky, E. K., Onetto, N., Canetta, R. M. and Arbuck, S. G. (1992). Taxol: the first of the taxanes, an important new class of antitumor agents. Semin. Oncol. 19, 646-662.
  30. Salceda, S. and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642-22647.
  31. Selvendiran, K., Bratasz, A., Kuppusamy, M. L., Tazi, M. F., Rivera, B. K. and Kuppusamy, P. (2009). Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int. J. Cancer 125, 2198-2204.
  32. Semenza, G. L. (2000). HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev. 19, 59-65.
  33. Simon, M. C. (2006). Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab. 3, 150-151.
  34. Toledano, M. B. and Leonard, W. J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. U. S. A. 88, 4328-4332.
  35. Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92, 5510-5514.
  36. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L. and Simons, J. W. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830-5835.
  37. Zhou, Q., Liu, L. Z., Fu, B., Hu, X., Shi, X., Fang, J. and Jiang, B. H. (2007). Reactive oxygen species regulate insulin-induced VEGF and HIF-1alpha expression through the activation of p70S6K1 in human prostate cancer cells. Carcinogenesis 28, 28-37.

Cited by

  1. Protein kinase C stimulates human B cell activating factor gene expression through reactive oxygen species-dependent c-Fos in THP-1 pro-monocytic cells vol.59, pp.1, 2012,
  2. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway vol.672, pp.1-3, 2011,
  3. Evaluation of interstitial protein delivery in multicellular layers model vol.35, pp.3, 2012,
  4. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration vol.131, pp.9, 2012,
  5. The Actin-Sequestering Protein Thymosin Beta-4 Is a Novel Target of Hypoxia-Inducible Nitric Oxide and HIF-1α Regulation vol.9, pp.10, 2014,
  6. Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition vol.20, pp.2, 2012,
  7. Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells vol.23, pp.1, 2015,
  8. modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer pp.2047-4849, 2019,