HYERS-ULAM STABILITY OF CUBIC-QUARTIC FUNCTIONAL EQUATIONS ON RANDOM NORMED SPACES

  • Jang, Sun-Young ;
  • Kang, Kyung-Mook
  • Received : 2010.08.12
  • Accepted : 2010.11.24
  • Published : 2010.11.30

Abstract

We introduce mixed cubic-quartic functional equations. And using the fixed point method, we prove the generalized Hyers-Ulam stability of cubic-quartic functional equations on random normed spaces.

Keywords

cubic functional equation;quartic functional equations;random normed space;Hyers-Ulam stability.

References

  1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. L. Cadariu & Radu: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346 (2004), 43-52.
  3. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
  4. S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  5. M. Eshaghi Gordji, A. Ebadian & S. Zolfaghari: Stability of a functional equation deriving from cubic and quartic functions. Abstract and Applied Analysis (2008), Article ID 801904, 17 pages.
  6. G.L. Forti & J. Schwaiger: Stability of homomorphisms and completeness. C. R. Math. Rep. Acad. Sci. Canada. 11 (1989), 215-220.
  7. P.Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. D.H. Hyers: On the stability of the linear functional. Proc. Amer. Math. Soc. 27 (1941), 222-224.
  9. D.H. Hyers, G. Isac & Th.M. Rassias: Stability of Functional Equations in Several Variables. Birkhauser, Basel, 1998.
  10. D.H. Hyers, G. Isac & Th.M. Rassias: On the asymptoticity aspect Hyers-Ulam stability of mappings. Proc. Amer. Math. Soc. 126 (1998),425-430. https://doi.org/10.1090/S0002-9939-98-04060-X
  11. O. Hadzic & E. Pap: Fixed Point Theory in PM Spaces. Kluwer Academic Publishers, Dordrecht, 2001.
  12. S.Y. Jang & C.K. Park: On the shadowing stability of functional equations. Discrete Dynamics an Nature and Secrety, Art. 895129 to be appeared.
  13. S.Y. Jang & C.K. Park: Cauchy-Rassias stability of sesquilinear n-quadratic mappings in Banach modules: Rocky Moutain Joural of Mathematics. 39 (2009).
  14. S.Y. Jang, C.K. Park, J.R. Lee & D.Y.Shin : Fuzzy stability of Jensen type quadratic functional equations. Abstract and Applied Analysis (2009) Art ID 535678.
  15. S.M. Jung: ' Hyers-Ulam-Rassias stability of Functional Equations in Mathematical Analysis,' Hadronic Press, FL, 2000.
  16. A.K. Mirmostafee & M.S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems 159 (2008), 720-729. https://doi.org/10.1016/j.fss.2007.09.016
  17. J.M. Rassias: On approximation of approximately linear mappings. J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  18. J.M. Rassias: On a new approximation of approximately linear mappings by linear mappings. Discuss. Math. 7 (1985), 193-196.
  19. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  20. Th.M. Rassias: On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications. Internat. Ser. Numer. 123 (1997), 297-309.
  21. Th.M. Rassias & J. Tabor: On approximately additive mappings in Banach spaces, in "Stability of Mappings of Hyers-Ulam Type"(Th. M. Rassias and J. Tabor, Eds.) , pp. 127-134, Hadronic Press, FL, 1994.
  22. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Not. Fis. Milano, 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  23. A.N. Sherstnev: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149 (1963), 280-283 (in Russian).
  24. B. Schweizer & A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
  25. B. Schweizer & A. Sklar: Probabilistic Metric Spaces. North-Holland, New York, 1983. 53 (1983), 113-129.
  26. S.M. Ulam: "Collection of Mathematical Problems". Interscience, New York, 1960.
  27. Z. Gajda: On stability of additive mappings. Internat. J. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  28. K. Jun & H. Kim: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274 (2002), 867-878. https://doi.org/10.1016/S0022-247X(02)00415-8