Effects of Glass Frit Addition on Microstructures and Dielectric Properties of Sintered BaTiO3 Ceramics

Glass Frit의 첨가에 따른 BaTiO3 소결체의 유전 특성 및 미세구조 변화

  • 우덕현 (충주대학교 신소재공학과, 친환경에너지 부품.소재센터) ;
  • 윤만순 (충주대학교 신소재공학과, 친환경에너지 부품.소재센터) ;
  • 손용호 ((주)CQV) ;
  • 류성림 (충주대학교 신소재공학과, 친환경에너지 부품.소재센터) ;
  • 어순철 (충주대학교 신소재공학과, 친환경에너지 부품.소재센터) ;
  • 권순용 (충주대학교 신소재공학과, 친환경에너지 부품.소재센터)
  • Published : 2010.03.01


$BaTiO_3$ dielectric ceramics are widely used to multi-layer ceramic capacitor. The $BaTiO_3$ powder was synthesized at $950^{\circ}C$ by using a solid state reaction and grinded by using a high-energy mill. And then, 2.53 wt% glass frit was added to the synthesized $BaTiO_3$ powders for lowering the sintering temperature. The mixed powders were sintered at various temperatures of $1170^{\circ}C$, $1200^{\circ}C$, $1230^{\circ}C$. Microstructures of the sintered $BaTiO_3$ ceramics were inspected by SEM and crystal structures were analyzed by XRD method. The relative dielectric constant was measured by using a impedance/gain phase analyzer. The synthesized $BaTiO_3$ powder had the tetragonal perovskite structure without secondary phase and the particle size was below 200 nm. The relative densities measured at the samples sintered at the temperature above $1200^{\circ}C$ were about 95%. The relative dielectric constant showed maximum value of 2310, which was measured in the specimen sintered at $1200^{\circ}C$. From these results, we could know that the added glass frit had effects on both lowering the sintering temperature and improving the dielectric property.


  1. H. Kishi, Y. Mizuno, and H. Chazono, "Basemetal electrode-multilayer ceramic capacitors: Past, present and future presectives", Jpn. J. Appl. Phys., Vol. 42, No. 1, p. 1, 2003.
  2. 이석원, 윤중락, “X7R 적층칩 세라믹 캐패시 터조성의 희토류첨가에 따른 유전특성”, 전기 전자재료학회논문지, 16권, 12호, p. 1080, 2003.
  3. 신효순, “졸 코팅 법을 이용한 $BaTiO_3$ 분체의 첨가제 코팅 2-Mg, Ca, Mn 이 첨가된 $BaTiO_3$ 졸을 이용한 첨가제 코팅 공정”, 전기전자재료학회논문지, 17권, 9호, p. 960, 2004.
  4. 이상철, 최의선, 배선기, 이영희, “고용량 캐패 시터로의 응용을 위한 (Ba, Bi, Sr) $TiO_3$ 세라믹스의 제조 및 특성에 관한 연구", 전기전자재료학회논문지, 16권, 3호, p. 195. 2003.
  5. J. J. Kim, H. S. Jung, J. Y. Cho, J. O. Hong, Y. T. Kim, and K. H. Hur, "Synthesis of 100 nm $BaTiO_3$ by Solid-state Reaction", J. Kor. Cer. Soc., Vol. 46, No. 2, p. 170, 2009.
  6. M. T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Alessio, "Solid-state of ultrafine $BaTiO_3$ powders from nanocrystalline $BaCO_3$ and $TiO_2$", J. Am. Ceram. Soc., Vol. 88, No. 9, p. 2374, 2005.
  7. K. Ying and T. E. Hsieh, "Sintering behavior and dielectric properties of nanocrystalline barium titanate", Mater. Sci. & Eng. B, Vol. 70, p. 241, 2007.
  8. H. Kishi, Y. Mizuno, and H. Chazono, "Base-metal eletrode-multilayer ceramic capacitors: Past, present and future perspectives", Jpn. J. Appl. Phys., Vol. 42, No. 1, p. 1, 2003.
  9. J. M. Haussonne, G. Desgardin, P. H. Bajolet, and B. Raveau, "Barium titanate perovskite sintered with lithium fluoride", J. Am. Ceram, Soc., Vol. 66, No. 11, p. 801, 1983.
  10. K. Ramesh Chowdary and E. C. Subbarao, "Liquid phase sintered $BaTiO_3$", Ferroelectrics, Vol. 37, No. 1, p. 689, 1981.
  11. N. Wada, T. Hiramatsu, T. Tamura, and Y. Sakabe, "Investigation of grain boundaries influence on dielectric properties in finegrained $BaTiO_3$ ceramics without the core-shell structure", Ceram. Inter., Vol. 34, p. 933, 2008.