Optimal Classifier Ensemble Design for Vehicle Detection Using GAVaPS

자동차 검출을 위한 GAVaPS를 이용한 최적 분류기 앙상블 설계

  • 이희성 (연세대학교 전기전자공학부) ;
  • 이제헌 (연세대학교 전기전자공학부) ;
  • 김은태 (연세대학교 전기전자공학부)
  • Published : 2010.01.01


This paper proposes novel genetic design of optimal classifier ensemble for vehicle detection using Genetic Algorithm with Varying Population Size (GAVaPS). Recently, many classifiers are used in classifier ensemble to deal with tremendous amounts of data. However the problem has a exponential large search space due to the increasing the number of classifier pool. To solve this problem, we employ the GAVaPS which outperforms comparison with simple genetic algorithm (SGA). Experiments are performed to demonstrate the efficiency of the proposed method.


  1. T. K. Ho, "Multiple classifier combination: lessons and next steps," Hybrid Methods in Pattern Recognition, pp. 171-198, 2002.
  2. 김영원, 오일석, "군집화와 유전 알고리즘을 이용한 거친-섬세한 분류기 앙상블 선택," 정보과학회논문지, vol. 34, no. 9, pp. 857-868, 2007.
  3. H. Lee, E. Kim, and M. Park, "A genetic feature weighting scheme for pattern recognition," Integrated Computer-Aided Engineering, vol. 14, no. 2, pp. 161-171, 2007.
  4. 이희성, 이제헌, 김은태 "GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 feature 선택," 한국지능시스템학회 논문지, vol. 18, no. 6, pp. 871-875, 2008.
  5. J. H. Holland, Genetic Algorithms in Search, Optimization and Machine Learning Addison-Wesley, Reading, MA, 1989.
  6. 권기호, "개체군 변환 유전자 알고리즘의 새로운 수명 할당 방식에 관한 연구," 전자공학회논문지, 제36권 C편 제1호, pp. 66-72, 1999.
  7. J. Arabas, Z. Michalewicz, and J. Mulawka "GAVaPS - a genetic algorithm with varying population size," in Proc. Evolutionary Computation conf. part of the IEEE World Congress on Computational Intelligence, 1994.
  8. J. Hwang, K. Rou, S. Park, E. Kim, and H. Kang, "PCA based Vehicle Detection for ACC," in Proc. 8th Int. Conf. on Elect., Inform., and Comm., pp 98-101, Jun. 2006.
  9. P. Gelhumeur, J. Hespanha, and D. Kriegman, "Eigenfaces vs. Fisherfaces: recognition using class specific linear projection," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp 711-720, 1997.