DOI QR코드

DOI QR Code

Alternating-Current Electrical Conduction Properties of DyCoO3 Ceramics

DyCoO3 세라믹스의 교류전도특성

  • Published : 2010.03.27

Abstract

The ac, dc conductivity and dielectric properties of $DyCoO_3$ were reported in the temperature range of 77 - 300K and in the frequency range of 20 Hz - 100 kHz. It was observed that at low temperature, ac conductivity is much higher than dc conductivity and the hopping carrier between localized states near the Fermi level was the dominant loss mechanism. A comparison of the measured ac conductivity $\sigma(\omega)$ was made with some of the models of hopping conductivity of the proposed earlier in the literature. It was observed that in $DyCoO_3$ the measured ac conductivity, over the entire frequency and temperature region, can be explained reasonably well by assuming two contributions $\sigma_1(\omega)$ and $\sigma_2(\omega)$ to the measured $\sigma(\omega)$. The first, $\sigma_1(\omega)$, which dominates at low temperature, may be due to impurity conduction in a small polaron; the second, $\sigma_2(\omega)$, which dominates at higher temperatures, depending on the frequency of measurements, may be due to the hopping of a small polaron and is reasonable for the dielectric relaxation peak.

Keywords

ac conductivity;dielectric relaxation;small polaron

References

  1. L. G Austin and N. F. Mott, Adv. Phys., 18, 41 (1969). https://doi.org/10.1080/00018736900101267
  2. G. Chern, W. K. Hsieh, M. F. Tai and K. S. Hsung, Phys. Rev. B., 58, 1252 (1998). https://doi.org/10.1103/PhysRevB.58.1252
  3. K. S. Roh, K.H. Ryu and C. H. Yo, J. Solid. State. Chem., 142, 288 (1999). https://doi.org/10.1006/jssc.1998.8033
  4. Y. D. Li, J. H. Zhang, C. S. Xiong and H. W. Liao, J. Am. Ceram. Soc., 83, 980 (2000).
  5. S. K. Park, T. Ishikawa, Y. Tokura, J. Q. Li and Y. Matsui, Phys. Rev. B., 60, 10788 (1999). https://doi.org/10.1103/PhysRevB.60.10788
  6. T. Ishikawa, S. K. Park, T. Katsufuji, T. Arima and Y. Tokura, Phys. Rev. B., 58, R13326 (2000). https://doi.org/10.1103/PhysRevB.58.R13326
  7. C. H. Kim, Y. R. Uhm and J. C. Sur, J. Kor. Phys. Soc., 37, 447 (2000).
  8. M. A. S. Rodriguez and J. B. Goodenough, J. Sold. State. Chem., 116, 224 (1995). https://doi.org/10.1006/jssc.1995.1207
  9. S. Yamaguchi, Y. Okimoto and Y. Tokura, Phys. Rev. B., 54, R11022 (1996). https://doi.org/10.1103/PhysRevB.54.R11022
  10. S. R. Sehlin, H. U. Anderson and D. M. Sparlin, Phys. Rev. B., 52, 11681 (1995). https://doi.org/10.1103/PhysRevB.52.11681
  11. M. Abbate, R. Potze, G. A. Sawatzky and A. Fujimori, Phys. Rev. B., 49, 7210 (1994). https://doi.org/10.1103/PhysRevB.49.7210
  12. N. Ikeda, K. Kohn, H. Kito, J. Akimitsu and K. Sirator, J. Phys. Soc. Jap., 63, 4556 (1994). https://doi.org/10.1143/JPSJ.63.4556
  13. H. Jhnas, D. Kim, R. J. Rasmussen and J. M. Honig, Phys. Rev. B., 54, 11224 (1996). https://doi.org/10.1103/PhysRevB.54.11224
  14. W. H. Jung, J. H. Sohn, J. H. Lee, J. H. Sohn, M. S. Park and S. H. Cho, J. Am. Ceram. Soc., 83, 797 (2000).
  15. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer and A. Loidl, Phys. Rev. B., 61, 3922 (2000). https://doi.org/10.1103/PhysRevB.61.3922
  16. J. C. Dyre and T. B. Schroder, Rev. Mode. Phy., 72, 873 (2000). https://doi.org/10.1103/RevModPhys.72.873
  17. J. C. Badot, V. Bianchi, N. Baffer and N. Belhadj-Tahar, J. Phys.:Condens Matter., 14, 6917 (2002). https://doi.org/10.1088/0953-8984/14/28/303
  18. A. Mansingh, J. K. Vaid and R. P. Tandon, J. Phys.: Condens Matter., 8, 1023 (1975).
  19. S. Sen and A. Ghosh, J. Phys.: Condens. Matter., 13, 1979 (2001). https://doi.org/10.1088/0953-8984/13/9/320
  20. A. Mansingh, A. K. Sinha, P. N. Dheer and M. Sayer, Phil. Mag B., 50, 621 (1984). https://doi.org/10.1080/13642818408238883
  21. L. Murawski, Phil. Mag, B., 50, L69 (1984). https://doi.org/10.1080/13642818408238888
  22. S. Chakraborty, M. Sadhukhan, D. K. Modak, K. K. Som, H. S. Maiti and B. K. Chaudhuri, Phil. Mag, B., 71, 1125 (1995).
  23. S. R. Elliott, Adv. Phys., 36, 135 (1987). https://doi.org/10.1080/00018738700101971
  24. A. R. Long, Adv. Phys., 31, 553 (1982). https://doi.org/10.1080/00018738200101418
  25. M. Pollak, Phil. Mag., 23, 519 (1971). https://doi.org/10.1080/14786437108216402
  26. M. Pollak and T. N. Gebell, Phys. Rev., 122, 1742 (1961). https://doi.org/10.1103/PhysRev.122.1742
  27. P. N. Butcher and P. L. Morys, J. Phys. C: Solid State Phys. 6, 2147 (1973). https://doi.org/10.1088/0022-3719/6/13/014
  28. G. E. Pike, Phys. Rev. B., 6, 1592 (1972).
  29. J. Matsuno, T. Mizokawa, A. Fujimori, K. Mamiya, Y. Takeda, S.Kawasaki and M. Takano, Phys. Rev. B., 60, 4605 (1999). https://doi.org/10.1103/PhysRevB.60.4605
  30. A. Seeger, P. Lunkenheimer, J. Hemberger, A. A. Mukhin, V. Yu Ivanov, A. M. Balbasov and A. Loid, J. Phys.:Condens. Matter., 11, 3273 (1999). https://doi.org/10.1088/0953-8984/11/16/009