DOI QR코드

DOI QR Code

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro) ;
  • Tanaka, A. (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro) ;
  • Uehara, A. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Shinzato, I. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Toride, Y. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Usui, N. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Hirakawa, K. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Takahashi, J. (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro)
  • Received : 2009.08.27
  • Accepted : 2009.11.06
  • Published : 2010.06.01

Abstract

Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

Keywords

Methane Production;Lactic Acid Bacteria;In vitro Fermentation

References

  1. Callaway, T. R., M. S. Alexandra, Carneiro De Melo and J. B. Russell. 1997. The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol. 35:90-96 https://doi.org/10.1007/s002849900218
  2. Daeschel, M. A., M. C. Mckenny and L. C. McDonald. 1990. Bacteriocidal activity of Lactobacillus plantarum C11. Food Microbiol. 7:91-99 https://doi.org/10.1016/0740-0020(90)90014-9
  3. Delves-Broughton, J., P. Blackburn, R. Evans and J. hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193-202 https://doi.org/10.1007/BF00399424
  4. Farkas-Himsley, H. 1980. Bacteriocins-are they broad-spectrum antibiotics? J. Antimicrob. Chemother. 6:424-426 https://doi.org/10.1093/jac/6.4.424
  5. Gonz$\'{a}$lez, B., P. Arca, B. Mayo and J. E. Su$\'{a}$rez. 1994. Detection, purification and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl. Environ. Microbiol. 6:2158-2163
  6. Jim$\'{e}$nez-D$\'{i}$az, R., R. M. Rios-S$\'{a}$nchez, M. Desmazeaud, J. L. Ruiz-Barba and J. C. Piard. 1993. Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59:1416-1424
  7. Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee and S. Chen. 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76:906-914
  8. Sang, S. L., Jih-Tay Hsu, Hilario C. Mantovani and James B. Russell. 2002. The effect of bovicin HC5, A bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55
  9. Sang, S. L., Hilário C. Mantovani and James B. Russell. 2002. The binding and degradation of nisin by mixed ruminal bacteria. FEMS Microbiol. Ecol. 42:339-345
  10. Todorov, S., B. Onno, O. Sorokine, J. M. Chobert, I. Ivanova and X. Dousset. 1999. Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int. J. Food Microbiol. 48:167-177 https://doi.org/10.1016/S0168-1605(99)00048-3
  11. Yoshida, N., N. Takahashi and A. Hiraishi. 2005. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl. Environ. Microbiol. 71:4325-4334 https://doi.org/10.1128/AEM.71.8.4325-4334.2005
  12. Yuan, J., Z.-Z. Zang, X.-Z. Chen and W. Yang. 2004. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 64:806-815 https://doi.org/10.1007/s00253-004-1599-1
  13. Leal, M. V., M. Baras, J. L. Ruiz-Barba, B. Floriano and R. Jimenez-Diaz. 1998. Bacteriocin production and competitiveness of Lactobacillus plantarum LPCO10 in olive juice broth, a culture medium obtained from olives. Int. J. Food. Microbiol. 43:129-134 https://doi.org/10.1016/S0168-1605(98)00079-8
  14. Aymerich, M. T., M. Garriga, J. M. Monfort, I. Nes and M. Hugas. 2000. Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: haracterization of bacteriocins. Food Microbiol. 17:33-45 https://doi.org/10.1006/fmic.1999.0275
  15. Enan, G., A. A. El-Essawy, M. Uyttendaele and J. Debevere. 1996. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage:characterization, production and bactericidal action of plantarcin UG1. Int. J. Food. Microbiol. 30:189-215 https://doi.org/10.1016/0168-1605(96)00947-6
  16. Muyzer, G., E. C. De waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700
  17. SAS. 1996. SAS/STAT$^{{\circledR}}$ Software: Changes and Enhancements through release 6.11. SAS Institute Inc., Cary, NC, USA
  18. Brijesh, K. T., P. V. Vasilis, P. O. D. Colm, M. Kasiviswanathan, B. Paula and P. J. Cullen. 2009. Applivation of natural antimicrobials for food preservation. J. Agric. Food Chem. 57: 5987-6000 https://doi.org/10.1021/jf900668n
  19. Nakatsu, C. H., V. Torsvik and L. ${\O}$vreas. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64:1382-1388 https://doi.org/10.2136/sssaj2000.6441382x
  20. Santoso, B., B. Mwenya, C. Sar, Y. Gamo, T. Kobayashi, R. Morikawa, K. Kimura, H. Mizukoshi and J. Takahashi. 2004. Effects of supplementing galacto- oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 91:209-217 https://doi.org/10.1016/j.livprodsci.2004.08.004
  21. Ennahar, S., K. Sonomoto and A. Ishizaki. 1999. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87:705-716 https://doi.org/10.1016/S1389-1723(99)80142-X
  22. Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride and J. Takahasi. 2005a. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Anim. Feed Sci. Technol. 118:295-306 https://doi.org/10.1016/j.anifeedsci.2004.10.004
  23. Sar, C., B. Mwenya, B. Pen, R. Morikawa, K. Takaura, T. Kobayashi and J. Takahashi. 2005b. Effect of nisin on ruminal methane production and nitrate/nitrite reduction in vitro. Aust. J. Agric. Res. 56:803-810 https://doi.org/10.1071/AR04294
  24. Aslim, B., Z. N. Yuksekdag, E. Sarikaya and Y. Beyatli. 2005. Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT 38:691-694 https://doi.org/10.1016/j.lwt.2004.08.001
  25. Guan, H., K. M. Wittenberg, K. H. Ominski and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906 https://doi.org/10.2527/jas.2005-652
  26. McAuliffe, O., R. P. Ross and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25:285-308 https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
  27. Kalmokoff, M. L., F. Bartlett and R. M. Teather. 1996. Are ruminal bacteria armed with bacteriocins? J. Dairy Sci. 79:2297-2306 https://doi.org/10.3168/jds.S0022-0302(96)76608-0
  28. Green, S. J. and D. Minz. 2005. Suicide Polymerase Endonuclease Restriction, a Novel Technique for Enhancing PCR Amplification of Minor DNA Templates. Appl. Environ. Microbiol. 71:4721-4727 https://doi.org/10.1128/AEM.71.8.4721-4727.2005
  29. Mwenya, B., C. Sar, B. Pen, R. Morikawa, K. Takaura, S. Kogawa, K. Kimura, K. Umetsu and J. Takahashi. 2006. Effects of feed additives on ruminal methanogenesis and anaerobicfermentation of manure in cows and steers. In:Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Amsterdam. ELSEVIER B.V. pp. 209-212
  30. WHO Expert Committee on Food Additives. 1969. Specifications for the identify and purity of food additives and their toxicological evaluation: some antibiotics. World Health Organ. Tech. Rep. Ser. No. 430
  31. Kelly, W. J., R. V. Asmundson and C. M. Huang. 1996. Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J. Appl. Bacteriol. 81:657-662
  32. Chen, H. and D. G. Hoocver. 2003. Bacteriocins and their food applications. CRFSFS 12:82-99 https://doi.org/10.1111/j.1541-4337.2003.tb00016.x
  33. ${\O}$rskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. Camb. 92:499-503 https://doi.org/10.1017/S0021859600063048
  34. Garriga, M., M. Hugas, T. Aymerich and J. M. monfort. 1993. Bacteriocinocinogenic activity of lactobacilli from fermented sausages. J. Appl. Bacteriol. 75:142-148 https://doi.org/10.1111/j.1365-2672.1993.tb02759.x
  35. Johnson, K. A. and D. E. Johnson. 1995. Methane emission from cattle. J. Anim. Sci. 73:2483-2492
  36. Conway, E. J. and E. O'Malley. 1942. Microdiffusion methods:ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 $\mu$g N). Biochem. J. 36:655-661
  37. Mantovani, H. C. and J. B. Russell. 2002. The ability of a bacteriocin of streptococcus bovis HC5 (bovicin HC5) to inhibit clostridium aminophilum, an obligate amino acid fermenting bacterium from the rumen. Anaerobe 8:247-252 https://doi.org/10.1006/anae.2002.0437
  38. MacDougall, E. I. 1948. Studies on ruminal saliva 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109
  39. Rekhif, N., A. Atrih and G. Lefebvre. 1995. Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6 isolated from fermented sausage. J. Appl. Bacteriol. 78:349-358 https://doi.org/10.1111/j.1365-2672.1995.tb03417.x

Cited by

  1. KJB23 and Betel Leaves Extract vol.30, pp.2, 2016, https://doi.org/10.1080/08905436.2016.1166440