Changes of Plasma Metabolites, Hormones, and mRNA Expression of Liver PEPCK-C in Spontaneously Ketotic Dairy Cows

  • Xia, C. (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Wang, Z. (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Liu, G.W. (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Zhang, H.Y. (College of Animal Science and Technology, Heilongjiang Aug.1st Land Reclamation University) ;
  • Zhang, C. (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Xu, C. (College of Animal Science and Veterinary Medicine, Jilin University)
  • Received : 2007.05.26
  • Accepted : 2009.01.16
  • Published : 2010.01.01


The objective of this study was to understand changes of plasma metabolites, hormones, and mRNA level of cytoplasmic phosphoenolpyruvate carboxykinase (PEPCK-C) in liver in spontaneous clinical ketosis; 10 clinically ketotic cows and 10 healthy cows were chosen from the same dairy farm. Eleven blood parameters and liver fat content were measured in all cows, and mRNA levels of PEPCK-C in liver were measured by semi-quantitative reverse transcription (RT) polymerase chain reaction (PCR). In ketotic cows, concentration of plasma glucose decreased (p<0.01), concentration of plasma nonesterified fatty acids (NEFA) and $\beta$-hydroxybutyric acid (BHBA) increased (p<0.01), liver fat content (18.8% wet weight) and activity of plasma aspartate aminotransferase (AST) increased (p<0.01), but concentration of plasma total bilirubin (TBIL), $\gamma$-glutamyl transpeptidase ($\gamma$-GT), and cholinesterase (CHE) increased (p>0.05). In addition, concentration of plasma insulin decreased (p<0.05), concentration of plasma glucagons decreased (p>0.05), and mRNA level of PEPCK-C in liver increased (p<0.05). It is concluded that the adaptative changes of metabolites, hormones, and mRNA level of PEPCK-C in ketotic cows were in favor of the enhancement of gluconeogenesis, the decrease of fat mobilization and the relief of ketosis, but these were still inadequate to relieve ketosis.


Supported by : Chinese National Nature Science Foundation


  1. Colleen, M. Croniger, Yael Olswang and Lea. Reshef. 2002. Phosphoenolpyruvate carboxykinase (PEPCK) revisited insights into its metabolic role. Biochem. Mol. Biol. Educ. 30(1):14-20
  2. Dale, H., L. Vik-Mo and P. Fjellheim. 1997. Relationship to energy balance, appetite and ketosis. Nord. Vet. Med. March 1, 31(3):97-105
  3. Theera Rukkwamsuk, Theo WenSing, and Math J. H. Geelen. 1998. Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the periparturient period. J. Dairy Sci. 81:2904-2911
  4. Xia, C., Z. Wang, C. Xu, H. Y. Zhang, Y. C. Sun and X. Y. Wang. 2006. Effects of substrates and neuroendocrine factors on expression of PEPCK-C mRNA in neonatal calf hepatocytes in vitro. Vet. Sci. China 36(04):3202326
  5. Grummer, RIC R. 1993. Etiology of Lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76:3882-3896
  6. Cansu Agca, Randall B. Greenfield and Jennifer R. Hartwell. 2002. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol. Genomics 11:53-63
  7. She Pengxiang, Masakazu Shiota, Kathy D. Shelton, Roger Chalkley, Catherine Postic and Mark A. 2000. Magnuson phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 20:6508-6517
  8. Bobe, J., W. Young and D. C. Beitz. 2004. Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 87:3105-3124
  9. Hayirli, A., S. J. Bertics and R. R. Grummer. 2002. Effects of slow-release insulin on production, liver triglyceride, and metabolic profiles of Holsteins in early lactation. J. Dairy Sci. 85:2180-2191
  10. Shen, K. T., X. Y. Qin and X. Zhang. 2003. Research on the regulation of PEPCK promotor active by Insulin, glucagon and dexamethasone in vitro. Journal of Fudan University Medical Sciences 30(4):338-340
  11. James K. Drachkley. 1999. Biology of dairy cows during the transition period: the Final Frontier? J. Dairy Sci. 82:2259-2273
  12. Herdth, T. H. 2000. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. North Am. Food Anim. Pract. 16:215-230
  13. Grizard, J., M. Balage and M. Manin. 1986. Hormonal control of hepatic metabolism in ruminants. Reprod. Nutr. Dev. 26(1B):245-57
  14. Smith, T. R., A. R. Hippen and D. C. Beitz. 1997. Metabolic characteristics of induced ketosis in normal and obese dairy cows. J. Dairy Sci. 80:1569-1581
  15. Veenhuren, J. J., J. K. Drackley and M. J. Richard. 1991. Metabolic changes in blood and liver curing development and early treatment of experimental fatty liver and ketosis in cows. J. Dairy Sci. 74:4238-4253
  16. Chelikani, P. K., J. D. Ambrose, D. H. Keisler and J. J. Kennelly. 2004. Effect of short-term fasting on plasma concentrations of leptin and other hormones and metabolites in dairy cattle. Domest. Anim. Endocrinol. 26(1):33-48
  17. Grum, D. E., J. K. Drackley, R. S. Younker, D. W. LaCount and J. J. Veenhuizen. 1996. Nutrition during the dry period and hepatic lipid metabolism of Periparturient dairy cows. J. Dairy Sci. 79:1858-1864
  18. Greenfield, R. B. 2000. Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation. J. Dairy Sci. 83:1228-1236
  19. Donkin, S. S. and L. E. Armentano. 1994. Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 266:1229-1237
  20. Theera Rukkwamsuk, Theo Wensing and Math J. H. Geelen. 1999. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows. J. Dairy Sci. 82:500-505

Cited by

  1. Critical thresholds of liver function parameters for ketosis prediction in dairy cows using receiver operating characteristic (ROC) analysis vol.35, pp.3, 2015,