DOI QR코드

DOI QR Code

Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells

  • Long, Xiang-E. (School of Medicine, Ningbo University) ;
  • Gong, Zhao-Hui (School of Medicine, Ningbo University) ;
  • Pan, Lin (School of Medicine, Ningbo University) ;
  • Zhong, Zhi-Wei (School of Medicine, Ningbo University) ;
  • Le, Yan-Ping (School of Medicine, Ningbo University) ;
  • Liu, Qiong (School of Medicine, Ningbo University) ;
  • Guo, Jun-Ming (School of Medicine, Ningbo University) ;
  • Zhong, Jiu-Chang (School of Medicine, Ningbo University)
  • Published : 2010.04.30

Abstract

Cyclin-dependent kinase 2 (CDK2) is a member of serine/threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of RNA interference (RNAi) plasmids which can successfully express small interference RNA (siRNA) in the transfected human cells. The results showed that the RNAi plasmids containing the coding sequences for siRNAs down-regulated the cdk2 gene expression in human cancer cells at the mRNA and the protein levels. Furthermore, we found that the cell cycle was arrested at G0G1 phases and the cell proliferation was inhibited by different siRNAs. These results demonstrate that suppression of CDK2 activity by RNAi may be an effective strategy for gene therapy in human cancers.

References

  1. Nurse, P. (2002) Cyclin dependent kinases and cell cycle control (nobel lecture). Chembiochem. 3, 596-603 https://doi.org/10.1002/1439-7633(20020703)3:7<596::AID-CBIC596>3.0.CO;2-U
  2. Murray, A. W. (2004) Recycling the Cell Cycle: Cyclins Revisited. Cell 116, 221-334 https://doi.org/10.1016/S0092-8674(03)01080-8
  3. Gong, L., Jiang, C., Zhang, B., Hu, H., Wang, W. and Liu, X. (2006) Adenovirus-mediated expression of both antisense ornithine decarboxylase and S-adenosylmethionine decarboxylase induces G1 arrest in HT-29 Cells. J. Biochem. Mol. Biol. 39, 730-736 https://doi.org/10.5483/BMBRep.2006.39.6.730
  4. Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., Zhang, C., Shokat, K. M., Jallepalli, P. V. and Fisher, R. P. (2007) Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839-850 https://doi.org/10.1016/j.molcel.2007.02.003
  5. Wandl, S. and Wesierska-Gadek, J. (2009) Is olomoucine, a weak cdk2 inhibitor, able to induce apoptosis in cancer cells? Ann. N Y Acad. Sci. 1171, 242-249 https://doi.org/10.1111/j.1749-6632.2009.04700.x
  6. Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., Nishimura, E. K., Golub, T. R. and Fisher, D. E. (2004) Critical role of cdk2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565-576 https://doi.org/10.1016/j.ccr.2004.10.014
  7. Narayanan, R., Adigun, A. A., Edwards, D. P. and Weigel, N. L. (2005) Cyclin-dependent kinase activity is required for progesterone receptor function: novel role for cyclin A/cdk2 as a progesterone receptor coactivator. Mol. Cell Biol. 25, 264-277 https://doi.org/10.1128/MCB.25.1.264-277.2005
  8. Jablonska, B., Aguirre, A., Vandenbosch, R., Belachew, S., Berthet, C., Kaldis, P. and Gallo, V. (2007) cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J. Cell Biol. 179, 1231-1245 https://doi.org/10.1083/jcb.200702031
  9. Li, X., Kim, J. W., Grønborg, M., Urlaub, H., Lane, M. D. and Tang, Q. Q. (2007) Role of cdk2 in the sequential phosphorylation/activation of C/EBP during adipocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 11597-11602 https://doi.org/10.1073/pnas.0703771104
  10. Neganova, I., Zhang, X., Atkinson, S. and Lako, M. (2009) Expression and functional analysis of G1 to S regulatory components reveals an important role for cdk2 in cell cycle regulation in human embryonic stem cells. Oncogene 28, 20-30 https://doi.org/10.1038/onc.2008.358
  11. Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. and Takahashi, T. (2010) Current advancement in radiation therapy for uterine cervical cancer. J. Radiat. Res. (Tokyo) 51, 1-8 https://doi.org/10.1269/jrr.09132
  12. Nakano, T., Kato, S., Ohno, T., Tsujii, H., Sato, S., Fukuhisa, K. and Arai, T. (2005) Long-term results of highdose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer 103, 92-101 https://doi.org/10.1002/cncr.20734
  13. Whelan, J., Patterson, D., Perisoglou, M., Bielack, S., Marina, N., Smeland, S. and Bernstein, M. (2010) The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 54, 350-354 https://doi.org/10.1002/pbc.22136
  14. M$\ddot{u}$ller, C. R., Smeland, S., Bauer, H. C., Saeter, G. and Strander, H. (2005) Interferon-alpha as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series. Acta Oncol. 44, 475-480 https://doi.org/10.1080/02841860510029978
  15. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 https://doi.org/10.1038/35888
  16. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191-3197 https://doi.org/10.1101/gad.13.24.3191
  17. Fjose, A., Ellingsen, S., Wargelius, A. and Seo H. C. (2001) RNA interference: mechanisms and applications. Biotechnol. Annu. Rev. 7, 31-57 https://doi.org/10.1016/S1387-2656(01)07032-6
  18. Bantounas, I., Phylactou, L. A. and Uney, J. B. (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545-557 https://doi.org/10.1677/jme.1.01582
  19. Martin, S. E. and Caplen, N. J. (2007) Applications of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet. 8, 81-108 https://doi.org/10.1146/annurev.genom.8.080706.092424
  20. Kim, D. and Rossi, J. (2008) RNAi mechanisms and applications. Biotechniques 44, 613-616 https://doi.org/10.2144/000112792
  21. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498 https://doi.org/10.1038/35078107
  22. Kim, J., Kim, H., Lee, Y., Yang, K., Byun, S. and Han, K. (2006) A simple and economical short-oligonucleotidebased approach to shRNA generation. J. Biochem. Mol. Biol. 39, 329-334 https://doi.org/10.5483/BMBRep.2006.39.3.329
  23. McIntyre, G. J. and Fanning, G. C. (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol. 6, 1-8 https://doi.org/10.1186/1472-6750-6-1
  24. Whitehead, K. A., Langer, R. and Anderson, D. G. (2009) Knocking down barriers:advances in siRNA delivery. Nat. Rev. Drug. Discov. 8, 129-138 https://doi.org/10.1038/nrd2742
  25. Sui, G., Soohoo, C., Affarel, B., Gay, F., Shi, Y., Forrester, W. C. and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 5515-5520 https://doi.org/10.1073/pnas.082117599
  26. Ammosova, T., Berro, R., Kashanchi, F. and Nekhai, S. (2005) RNA interference directed to cdk2 inhibits HIV-1 transcription. Virology 341, 171-178 https://doi.org/10.1016/j.virol.2005.06.041
  27. Lai, S. R., Andrews, L. G. and Tollefsbol, T. O. (2007) RNA interference using a plasmid construct expressing short-hairpin RNA. Methods Mol. Biol. 405, 31-37 https://doi.org/10.1007/978-1-60327-070-0_4
  28. Park, K. J. and Soslow, R. A. (2009) Current concepts in cervical pathology. Arch.Pathol. Lab. Med. 133, 729-738
  29. Schwartz, L. A. (2009) Cervical cancer: disease prevention and informational support. Can. Oncol. Nurs. J. 19, 6-9 https://doi.org/10.5737/1181912x19169
  30. Messerschmitt, P. J., Garcia, R. M., Abdul-Karim, F. W., Greenfield, E. M. and Getty, P. J. (2009) Osteosarcoma. J. Am. Acad. Orthop. Surg. 17, 515-527 https://doi.org/10.5435/00124635-200908000-00005
  31. Li, K., Lin, S. Y., Brunicardi, F. C. and Seu, P. (2003) Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 63, 3593-3597
  32. Wu, H., Hait, W. N. and Yang, J. M. (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 63, 1515-1519
  33. Xu, X. M., Wang, D., Shen, Q., Chen, Y. Q. and Wang, M. H. (2004) RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectalcarcinoma cells. Oncogene 23, 8464-8474 https://doi.org/10.1038/sj.onc.1207907
  34. Lapteva, N., Yang, A. G., Sanders, D. E., Strube, R. W. and Chen, S. Y. (2005) CXCR4 knokdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 12, 84-89 https://doi.org/10.1038/sj.cgt.7700770
  35. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326-330 https://doi.org/10.1038/nbt936
  36. Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188-200 https://doi.org/10.1101/gad.862301
  37. Zeng, Y. and Cullen, B. R. (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855-860 https://doi.org/10.1017/S1355838202020071
  38. Kawasaki, H. and Taira, K. (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700-707 https://doi.org/10.1093/nar/gkg158
  39. Shukla, V., Coumoul, X. and Deng, C. X. (2007) RNAi-based conditional geneknockdown in mice using a U6 promoter driven vector. Int. J. Biol. Sci. 3, 91-99 https://doi.org/10.3923/ijb.2007.91.96

Cited by

  1. Antiprogestins in gynecological diseases vol.149, pp.1, 2014, https://doi.org/10.1530/REP-14-0416
  2. SATB2 is localized to the centrosome and spindle maintenance and its knockdown leads to downregulation of CDK2 vol.52, pp.4, 2016, https://doi.org/10.1007/s11626-015-9985-9
  3. LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway vol.3, pp.5, 2012, https://doi.org/10.1038/cddis.2012.57
  4. Overexpression of TSPAN8 Promotes Tumor Cell Viability and Proliferation in Nonsmall Cell Lung Cancer vol.31, pp.10, 2016, https://doi.org/10.1089/cbr.2016.2108
  5. Cdk2 Silencing via a DNA/PCL Electrospun Scaffold Suppresses Proliferation and Increases Death of Breast Cancer Cells vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0052356
  6. MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells vol.34, pp.3, 2013, https://doi.org/10.1007/s13277-013-0741-z
  7. Role of STAT3 Phosphorylation in Ethanol-Mediated Proliferation of Breast Cancer Cells vol.19, pp.2, 2016, https://doi.org/10.4048/jbc.2016.19.2.122
  8. Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A vol.37, pp.4, 2014, https://doi.org/10.14348/molcells.2014.2360
  9. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells vol.37, pp.11, 2016, https://doi.org/10.1007/s13277-016-5367-5
  10. miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer vol.138, pp.10, 2012, https://doi.org/10.1007/s00432-012-1287-y
  11. Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB vol.9, pp.3, 2013, https://doi.org/10.1371/journal.pgen.1003368