Oral Administration of Phosphorylated Dextran Regulates Immune Response in Ovalbumin-Immunized Mice

  • Nagasawa, Chiho (Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University) ;
  • Nishimura-Uemura, Junko (Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University) ;
  • Tohno, Masanori (National Agriculture and Food Research Organization, National Institute of Livestock and Grassland Science) ;
  • Shimosato, Takeshi (Fiber-Nanotech Young Researcher Empowerment Center, Shinshu University) ;
  • Kawai, Yasushi (Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University) ;
  • Ikegami, Shuji (Food Science Institute) ;
  • Oda, Munehiro (Food Science Institute) ;
  • Saito, Tadao (Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University) ;
  • Kitazawa, Haruki (Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University)
  • 투고 : 2008.12.04
  • 심사 : 2009.07.10
  • 발행 : 2010.01.01


Phosphorylated dextran (P-Dex) is an acidic polysaccharide that functions as an immune adjuvant. P-Dex is known to regulate immune response by maintaining a balance between Th1 and Th2 cells in vitro, and thus may also be important in the control of allergic reactions. In the current study, we report the optimum conditions required for the efficient phosphorylation of dextran without toxicity. We found that when dextran was heated at 160${^{\circ}C}$ for 24 h in phosphate buffer (pH 5.0), the resulting P-Dex demonstrated the highest phosphorus content (6.8%). We also report that P-Dex enhances mitogenic activity in mouse splenocytes and induces expression of CD69 and CD86 on the surface of B cells and dendritic cells (DC) in vitro. Oral administration of P-Dex to ovalubmin (OVA)-immunized mice was found to reduce antigen-induced cell proliferation and suppress the expression of CD86 on Th2-inducing DC via exogenous OVA stimulation. P-Dex was also found to increase IL-10 expression in the splenocytes of treated mice. These findings suggest that oral administration of P-Dex increases immunological tolerance and improves the specificity of immunological response to specific antigens.


연구 과제 주관 기관 : Japan Society for the Promotion of Science (JSPS)


  1. Geisel, J., F. Kahl, M. Muller, H. Wagner, C. J. Kirsching, I. B. Autenrieth and J. S. Frick. 2007. IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and crosstolerance in dendritic cells. J. Immunol. 179(9):5811-5818
  2. Iliev, I. D., M. Tohno, D. Kurosaki, T. Shimosato, F. He, M. Hosoda, T. Saito and H. Kitazawa. 2008. Immunostimulatory oligodeoxynucleotide containing TTTCGTTT motif from Lactobacillus rhamnosus GG DNA potentially suppresses OVA-specific IgE production in mice. Scand. J. Immunol. 67:370-376
  3. Kitazawa, H., T. Harata, J. Uemura, T. Saito, T. Kaneko and T. Itoh. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40:169-175
  4. Michelsen, K. S., A. Aicher, M. Mohaupt, T. Hartung, S. Dimmeler, C. J. Kirschning and R. R. Schumann. 2001. The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS). Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J. Biol. Chem. 276(28):25680-25686
  5. Tarelli, E. and S. F. Wheeler. 1994. Drying from phosphatebuffered solutions can result in the phosphorylation of primary and secondary alcohol groups of saccharides, hydroxylated amino acids, proteins, and glycoproteins. Anal. Biochem. 222:196-201
  6. Nishimura-Uemura, J., H. Kitazawa, Y. Kawai, T. Itoh, M. Oda and T. Saito. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol. 20:267-273
  7. Kelsall, B. L. and F. Leon. 2005. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 206:132-148
  8. Ito, S., K. J. Ishii, M. Gursel, H. Shirotra, A. Ihata and D. M. Klinman. 2005. CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection. J. Immunol. 174:777-782
  9. Xia, D., A. Sanders, M. Shan, A. Bickerestaff and C. Orosz. 2001. Real-time polymerase chain reaction analysis reveals an evolution of cytokine mRNA production in allograft acceptor mice. Transplantation 72:907-914
  10. Colbere-Garapin, F., S. Martin-Latil, B. Blondel, L. Mousson, I. Pelletier, A. Autret, A. François, V. Niborski, G. Grompone, G. Catonnet and A. van de Moer. 2007. Prevention and treatment of enteric viral infections: possible benefits of probiotic bacteria. Microbes Infect. 9:1623-1631
  11. Tohno, M., T. Shimosato, H. Kitazawa, S. Katoh, D. I. Iliyan, T. Kimura, Y. Kawai, K. Watanabe, H. Aso, T. Yamaguchi and T. Saito. 2005. Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem. Biophys. Res. Commun. 330:547-554
  12. Tohno, M., T. Shimosato, Y. Kawai, H. Aso, S. Ikegami, N. Taketomo, T. Saito and H. Kitazawa. 2007a. Advanced molecular immunoassay system for immunobiotic lactic acid bacteria using a transfectant of Toll-like receptor 2. Anim. Sci. J. 78:195-205
  13. Yanagawa, Y. and K. Onoe. 2007. Enhanced IL-10 production by TLR4- and TLR2-primed dendritic cells upon TLR restimulation. J. Immunol. 178(10):6173-6180
  14. Li, C. P., A. S. Salvador, H. R. Ibrahim, Y. Sugimoto and T. Aoki. 2003. Phosphorylation of egg white proteins by dry-heating in the presence of phosphate. J. Agric. Food Chem. 51:6808-6815
  15. Lehmann, J., S. Bellmann, S. Werner, R. Schroder, N. Schutze and G. Alber. 2001. IL-12p40-Dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J. Immunol. 167:5304-5315
  16. Suzuki, M., T. Mikami, T. Matsumoto and S. Suzuki. 1977. Preparation and antitumor activity of o-palmitoyldextran phosphates, o-palmitoyldextrans, and dextran phosphate. Carbohydr. Res. 53:223-229
  17. Kitazawa, H., Y. Ishii, J. Uemura, Y. Kawai, T. Saito, T. Kaneko, K. Noda and T. Itoh. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiol. 17:109-118
  18. Steinman, R. M., D. Hawiger and M. C. Nussenzweig. 2003. Tolerogenic dendritic cells. Annu. Rev. Immunol. 3:685-711
  19. Takahashi, N., H. Kitazawa, N. Iwabuchi, J. Z. Xiao, K. Miyaji, K. Iwatsuki and Tadao Saito. 2006c. Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Biosci. Biotechnol. Biochem. 70:2013-2017
  20. Sato, A. and A. Iwasaki. 2005. Peyer's patch dendritic cells as regulators of mucosal adaptive immunity. Cell Mol. Life Sci. 62:1333-1338
  21. Sato, T., J. Nishimura-Uemura, T. Shimosato, Y. Kawai, H. Kitazawa and T. Saito. 2004. Dextran from Leuconostoc mesenteroides Augments Immunostimulatory effects by the introduction of phosphate groups. J. Food Protect. 67:1719-1724
  22. Takahashi, N., H. Kitazawa, T. Shimosato, N. Iwabushi, J. Z. Xiao, K. Iwatsuki, S. Kokubo and T. Saito. 2006a. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunol. Med. Microbiol. 46:461-469
  23. Maldonado-Lopez, R., T. De Smedt, B. Pajak, C. Heiman, K. Thielemans, O. Leo, J. Urbain, C. R. Maliszewski and M. Moser. c. Role of CD8${\alpha}^{+}$ and CD8${\alpha}^{-}$ dendritic cells in the induction of primary immune responses in vivo. J. Leukoc. Biol. 66:242-246
  24. Uemura, J., T. Itoh, T. Kaneko and K. Noda. 1998. Chemical characterization of extracellular polysaccharide from Lactobacillus delbrueckii subsp. bulgaricus OLL 1073R-1. Milchwissenschaft 53:443-446
  25. Kitazawa, H., T. Yamaguchi and T. Itoh. 1992. B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. J. Dairy Sci. 75:2946-2951
  26. Dittmer, J. C. and M. A. Wells. 1969. Quantitative and qualitative analysis of lipids and lipid components. Meth. Enzymol. 14:482-530
  27. Tohno, M., T. Shimazu, W. Ueda, D. Anzawa, H. Aso, J. Nishimura, Y. Kawai, Y. Saito, T. Saito and H. Kitazawa. 2007b. Molecular cloning porcine RP105/MD-1 involved in recognition of extracellular phosphopolysaccharides from Lactococcus lactis ssp. cremoris. Mol. Immunol. 44:2566-2577
  28. Shimosato, T., H. Kitazawa, S. Katoh, Y. Tomioka, R. Karima, S. Ueha, Y. Kawai, T. Hishinuma, K. Matsushima and T. Saito. 2003. Swine Toll-like receptor 9 recognizes CpG motifs of human cell stimulant. Biochim. Biophys. Acta. 1627:56-61
  29. Takahashi, N., H. Kitazawa, N. Iwabushi, J. Z. Xiao, K. Miyaji, K. Iwatsuki and T. Saito. 2006b. Immunostimulatory oligodeoxynucleotide from Bifidobacterium longum suppresses Th2 immune responses in a murine model. Clin. Exp. Immunol. 145:130-138