Effect of Two Doses of Different Zinc Sources (Inorganic vs. Chelated form) on the Epithelial Proliferative Activity and the Apoptotic Index of Intestinal Mucosa of Early-weaned Pigs Orally Challenged with E. coli K88

  • Mazzoni, Maurizio (DIMORFIPA, University of Bologna) ;
  • Merialdi, Giuseppe (Istituto Zooprofilattico Sperimentale Bruno Umbertini, Section of Bologna) ;
  • Sarli, Giuseppe (Department of Veterinary Public Health and Animal Pathology, University of Bologna) ;
  • Trevisi, Paolo (DIPROVAL, University of Bologna) ;
  • Bosi, Paolo (DIPROVAL, University of Bologna)
  • Received : 2009.06.26
  • Accepted : 2009.10.13
  • Published : 2010.06.01


The effect of two doses of different sources of zinc, inorganic (zinc oxide) or chelated (zinc glutamate chelate), on morphology and turn-over of the small intestine was assessed in early-weaned pigs orally challenged with enterotoxigenic E. coli K88 (ETEC). Sixty pigs weaned at 21 days were assigned to one of the following 5 diets: control (C); C+Zinc oxide (ZnO), either a 200 or a 2,500 mg Zn/kg dose; or C+zinc chelate with glutamic acid (Glu-Zn), either a 200 or a 2,500 mg Zn/kg dose. On d 2, the pigs were orally inoculated with 1.5 ml of a $10^{10}$ CFU/ml E. coli K88ac O148 suspension. Zinc supplements did not improve the performance of the pigs, but on d 5 faecal excretion of ETEC was reduced, and this was mainly due to high zinc doses (p<0.05). The villous height in the duodenum was improved by the zinc supplements (p<0.01) whatever the source and the level, whereas no effect was seen in the other two tracts of small intestine. The diet did not affect apoptosis and mitosis counts, while ETEC-susceptible pigs had more mitotic cells in the villi than non-susceptible pigs, particularly in the jejunum (p<0.01). The duodenum had fewer mitotic cells in the villi (p<0.05) and in the crypts (p<0.01) and more apoptotic cells in the villi. High dietary doses of ZnO or Zn-Glutamate improve villous height of the duodenum, but not of the jejunum and the ileum, and do not affect the epithelial proliferative activity and apoptotic index of intestinal mucosa of early-weaned pigs orally challenged with ETEC.


Weaning Pig;Zinc Oxide;Small Intestine;Apoptosis;Mitosis


  1. Bosi, P., L. Casini, A. Finamore, C. Gremokolini, G. Merialdi, P. Trevisi, F. Nobili and E. Mengheri. 2004. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 82:1764-1772
  2. Hedemann, M. S., B. B. Jensen and H. D. Poulsen. 2006. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J. Anim. Sci. 84:3310-3320
  3. Jensen-Waern, M., L. Melin, R. Lindberg, A. Johannisson, L. Petersson and P. Wallgren. 1998. Dietary zinc oxide in weaned pigs-effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Res. Vet. Sci. 64:225-231
  4. Thymann, T., K. U. S${\o}$rensen, M. S. Hedemann, J. Elnif, B. B. Jensen, H. Banga-Mboko, T. D. Leser and P. T. Sangild. 2007. Antimicrobial treatment reduces intestinal microflora and improves protein digestive capacity without changes in villous structure in weanling pigs. Br. J. Nutr. 97:1128-1137
  5. Hill, G. M., D. C. Mahan, S. D. Carter, G. L. Cromwell, R. C. Ewan, R. L. Harrold, A. J. Lewis, P. S. Miller, G. C. Shurson and T. L. Veum. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J. Anim. Sci. 79:934-941
  6. Gramaccioli, C. M. 1966. The crystal structure of zinc Glutamate dihydrate. Acta Cryst. 21:600-605
  7. Roselli, M., A. Finamore, M. S. Britti, P. Bosi, I. Oswald and E. Mengheri. 2005. Alternatives to in-feed antibiotics in pigs:evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 54:203-218
  8. Mavromichalis, I., D. M. Webel, E. N. Parr and D. H. Baker. 2001. Growth-promoting efficacy of pharmacological doses of tetrabasic zinc chloride in diets for nursery pigs. Can. J. Anim. Sci. 81:387-391
  9. Case, C. L. and M. S. Carlson. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci. 80:1917-1924
  10. Owusu-Asiedu, A., C. M. Nyachoti and R. R. Marquardt. 2003. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody, zinc oxide, fumaric acid, or antibiotic. J. Anim. Sci. 81:1790-1798
  11. Alferez, D. and R. A. Goodlad. 2007. To best measure cell proliferation in samples from the intestine. Cell Prolif. 40:231-240
  12. NRC. 1998. Pages 110-116 in Nutrient requirements of swine. 10th Ed. National Academy Press, Washington, DC
  13. Buff, C. E., D. W. Bollinger, M. R. Ellersieck, W. A. Brommelsiek and T. L. Veum. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci. 83:2380-2386
  14. Van den Broeck, W., E. Cox and B. M. Goddeeris. 1999. Receptordependent immune responses in pigs after oral immunization with F4 fimbriae. Infect. Immun. 67:520-526
  15. Wijsman, J. H., R. R. Jonker, R. Keijzer, J. H. Cornelis, C. J. Van De Velde, C. J. Cornelisse and J. H. Van Dierendonck. 1993 A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J. Histochem. Cytochem. 41:7-12
  16. Zhang, B. K. and Y. M. Guo. 2007. Beneficial effects of tetrabasic zinc chloride for weanling piglets and the bioavailability of zinc in tetrabasic form relative to ZnO. Anim. Feed Sci. Technol. 135:75-85
  17. Tarnow, P., M. Agren, H. Steenfos and J. O. Jansson. 1994. Topical zinc oxide treatment increases endogenous gene expression of insulin-like growth factor-1 in granulation tissue from porcine wounds. Scand. J. Plast. Reconstr. Surg. Hand Surg. 28:255-259
  18. Gerdes, J., M. H. G. Becker, G. Key and G. Cattoretti. 1992) Immunohistological detection of tumour growth fraction (Ki67 antigen) in formalin-fixed and routinely processed tissues. J. Pathol. 168:85-87
  19. Hollis, G. R., S. D. Carter, T. R. Cline, T. D. Crenshaw, G. L. Cromwell, G. M. Hill, S. W. Kim, A. J. Lewis, D. C. Mahan, P. S. Miller, H. H. Stein and T. L. Veum. 2005. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs. J. Anim. Sci. 83:2123-2129
  20. Nabuurs, M. J., A. Hoogendoorn, E. J. van der Molen and A. L. van Osta. 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in The Netherlands. Res. Vet. Sci. 55:78-84
  21. Bhar, R., S. K. Maiti, T. K. Goswami, R. C. Patra, A. K. Garg and A. K. Chhabra. 2003. Effect of dietary vitamin C and zinc supplementation on wound healing, immune response and growth performance in swine. Indian J. Anim. Sci. 73:674-677
  22. Li, X., J. Yin, D. Li, X. Chen, J. Zang and X. Zhou. 2006. Dietary supplementation with zinc oxide increases Igf-I and Igf-I receptor gene expression in the small intestine of weanling piglets. J. Nutr. 136:1786-1791
  23. Wang, Y. Z., Z. R. Xu, W. X. Lin, H. Q. Huang and Z. Q. Wang. 2004. Developmental gene expression of antimicrobial peptide PR-39 and effect of zinc oxide on gene regulation of PR-39 in piglets. Asian-Aust. J. Anim. Sci. 17:1635-640
  24. Wang, X., D. Ou, J. Yin, G. Wu and J. Wang. 2009. Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209-218
  25. Roselli M., A. Finamore, I. Garaguso, M. S. Britti and E. Mengheri. 2003. Zinc oxide protects cultured enterocytes against the damage induced by Escherichia coli. J. Nutr. 133:4077-4082
  26. Liu, S., S. M. Edgerton, D. H. Moore and A. Thor. D 2001. Measures of cell turnover (Proliferation and Apoptosis) and their association with survival in breast cancer. Clin. Cancer Res. 7:1716-1723
  27. Ewtushik, A. L., R. F. P. Bertolo and R. O. Ball. 2000. Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can. J. Anim. Sci. 80:653-662
  28. H${\o}$jberg, O., N. Canibe, H. D. Poulsen, M. S. Hedemann and B. B. Jensen. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 71:2267-2277
  29. Li, B. T., A. G. Van Kessel, W. R. Caine, S. X. Huang and R. N. Kirkwood. 2001. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can. J. Anim. Sci. 81:511-516
  30. Lutgens, E., Ebo D. de Muinck, Peter J. E. H. M. Kitslaar, Jan H. M. Tordoir, Hein J. J. Wellensa and Mat J. A. P. Daemenc. 1999. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc. Res. 41:473-479
  31. Reeds, P. J., D. G. Burrin, B. Stoll and F. Jahoor. 2000. Intestinal glutamate metabolism. J. Nutr. 130:978S-982S
  32. Broom, L. J., H. M. Miller, K. G. Kerr and J. S. Knapp. 2006. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res. Vet. Sci. 80:45-54

Cited by

  1. Effects of Chelated Copper and Zinc Supplementation on Growth Performance, Nutrient Digestibility, Blood Profiles, and Fecal Noxious Gas Emission in Weanling Pigs vol.55, pp.4, 2013,
  2. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence vol.101, pp.6, 2016,