An Analysis On Students' Misconceptions of the Reversibility of Irrational Functions

무리함수의 가역성에 대한 학생들의 오개념 분석

  • Lee, Ki-Suk (Department of Mathematics Education, Korea National University of Education) ;
  • Lee, Du-Ho (Uiseong Technical High School)
  • Received : 2010.08.10
  • Accepted : 2010.09.15
  • Published : 2010.09.30

Abstract

The inverse function of a one-to-one correspondence is explained with a graph, a numerical formula or other useful expressions. The purpose of this paper is to know how low achieving students understand the learning contents needed reversible thinking about irrational functions. Low achieving students in this study took paper-pencil test and their written answers were collected. They made various mistakes in solving problems. Their error types were grouped into several classes and identified in this analysis. Most students did not connected concepts that they learned in the lower achieving students to think in reverse order in case of and to visualize concepts of functions. This paper implies that it is very important to take into account students' accommodation and reversible thinking activity.

References

  1. 강행고 외 8인 (2005). 중학교 수학 7-가. 서울: (주)중앙교육진흥연구소.
  2. 강현영․이동환 (2007). 수학교육에서 상보성. 수학교육학연구, 17(4), 437-452.
  3. 교육인적자원부 (2007). 수학과 교육과정 (교육인적자원부 고시 제2007-79호 별책 8).
  4. 금종해․이만근․이미라․김영주 (2006). 중학교 수학 7-가. 서울: (주)고려출판.
  5. 김남희․나귀수․박경미․이경화․정영옥․홍진곤 (2006). 수학교육과정과 교재연구. 서울: 경문사.
  6. 김연식․우정호․박영배․박교식 (1997). 수학교육학 용어 해설(7), 대한수학교육학회 논문집, 7(2), 397-411.
  7. 김인희 (2009). 고등학교 2학년 학생들의 함수적 상황 번역 능력. 한국교원대학교 대학원 석사학위논문.
  8. 류성림 (1998). 피아제의 균형화 모델에 의한 증명의 지도 방법 탐색. 한국교원대학교 대학원 박사학위논문.
  9. 류성림 (1999). 수학적 사고력 신장을 위한 도형 영역의 교수학습 자료 개발에 관한 연구. Res. Sci. Math. Educ. 23. 153-186. 대구교육대학교.
  10. 박배훈․김원경․조민식․김원석․이대현 (2006). 고등학교 수학10-나. 서울: 법문사.
  11. 박선화 (1993). 개념학습에서 발생하는 인지적 갈등 요인에 대한 고찰- 개념정의와 개념 이미지의 관계를 중심으로. 대한수학교육학회 논문집, 3(1), 397-411.
  12. 박정선 (2005). 함수와 역함수 개념 이해의 수학교육적 고찰. 서울대학교 석사학위논문.
  13. 변영계 (2003). 교수․학습 이론의 이해. 서울: 학지사.
  14. 서울시교육청 (2002). 2002 전국연합학력평가 분석 자료집. 서울: 한솔기획
  15. 이경화․신보미 (2005). 상위 집단 학생들의 함수의 연속 개념 이해. 대한수학교육학회, 수학교육학연구, 15(1), 39-56.
  16. 우정호 (1999). 학교수학의 교육적 기초. 서울: 서울대학교출판부.
  17. 우정호 (2001). 수학 학습-지도 원리와 방법. 서울: 서울대학교출판부.
  18. 정영옥 (1997). Freudenthal의 수학화 학습-지도론 연구. 서울대학교 대학원 박사학위논문.
  19. 조완영․양재식 (2003). 중학교 1,2학년 학생들의 함수 개념 이미지와 함수 정의 능력, 한국수학교육학회지 시리즈 E <수학교육논문집>, 15, 147-152.
  20. 황혜정․나귀수․최승현․박경미․임재훈․서동엽 (2006). 교육학신론. 서울: 문음사.
  21. 황혜정 (2001). 수학적 사고 과정 관련의 평가 요소 탐색, 한국수학교육학회지 시리즈 A <수학교육>, 40(2), 253-263.
  22. Bayazit, I., & Gray, E. (2004). Understanding Inverse Functions: The Relationship Teaching Practice and Student Lesrning. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education 2. 103-110.
  23. Eisenberg, T. (1992). On the development of a sense for functions. In G. Harel & E. Dubinsky (Eds.), The concept of the function: Aspects of epistemology and pedagogy (153-174). MAA Notes, 25. Washington, D.C.: Mathematical Association of America.
  24. Engelke, N., Oehrtman, M., & Carson, M. (2005). Composition of Functions: Precalculus Students' Understandings. Proceedings of the 27th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.
  25. Ginsburg, H., & Opper, S. (2006). 피아제의 인지발달이론. (김정민, 역). 서울: 학지사. (영어 원작은 1988년 출판).
  26. NCTM (1998). 수학교육과정과 평가의 새로운 방향. (구광조․오병승․류희찬, 역). 서울: 경문사. (영어 원작은 1989년 출판).
  27. NCTM (2007). 학교수학을 위한 원리와 규준. (류희찬․조완영․이경화․나귀수․김남균․방정숙, 역). 서울: 경문사. (영어 원작은 2000년 출판).
  28. Piaget, J. (1972). Intellectual Evolution from Adolescence to Adulthood. Human Development, 51, 40-47.
  29. O'bryan, K., & MacArthur, R. (1969). Reversibility, Intelligence, and Creativity in Nine-Year-Old Boys. Child Development, 40, 33-45. https://doi.org/10.2307/1127153
  30. Polya, G. (2005). 수학적 발견(II). (우정호 외 6인 역). 서울: 교우사. (영어 원작은 1981년 출판).
  31. Ramful, A., & Olive, J. (2008). Reversibility of thought: An instance in multiplicative tasks. Journal of Mathematical Behavior 27, 138-151. https://doi.org/10.1016/j.jmathb.2008.07.005
  32. Roll, S. (1970). Reversibility Training and Stimulus Desirability as Factors in Conservation of Number. Child Development 41, 501-507. https://doi.org/10.2307/1127049
  33. Sajka, M. (2003). A Secondary School Student's Understanding of the Concept of Function - A Case Study. Educational Studies in Mathematics 53, 229-254. https://doi.org/10.1023/A:1026033415747
  34. Selden, A., & Selden, J. (1992). Research Perpectives of Functions : Summaries and Overview. In G. Harel & E. Dubinsky (Eds.), The concept of the function: Aspects of epistemology and pedagogy (1-21). MAA Notes, 25. Washington, D.C.
  35. Sierpinska, A. (1992). On Understanding the Notion of Function. In G. Harel & E. Dubinsky (Eds.), The concept of the function: Aspects of epistemology and pedagogy (1-21). MAA Notes, 25. Washington, D.C.
  36. Skemp, R. R. (2007). 수학학습 심리학. (황우형, 역). 서울: (주)사이언스북스. (영어 원작은 1987년 출판)
  37. Tall, D. (2003). 고등수학적 사고. (류희찬․조완영․김인수, 역). 서울: 경문사. (영어 원작은 1991년 출판).
  38. Tall, D., & Vinner, S.(1981). Concept Image and Concept Definition in Mathematics with Paticular Reference to Limits and Continuity. Educational Studies in Mathematics 12, 151-169. https://doi.org/10.1007/BF00305619
  39. Vinner, S. (1983). Concept definition, concept image and the notion of function. Int. J. Maths, 14(3), 293-305. https://doi.org/10.1080/0020739830140305