Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy

공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석

  • Lee, Yon-Sik (Dept. of Computer Information Engineering, Kunsan National University) ;
  • Kim, Young-Ja (Dept. of Computer Information, Korea Polytechnics II) ;
  • Park, Sung-Sook (Dept. of Ubiquitous System, Korea Polytechnics V)
  • 이연식 (군산대학교 컴퓨터정보공학과) ;
  • 김영자 (한국폴리텍II대학 컴퓨터정보과) ;
  • 박성숙 (한국폴리텍V대학 유비쿼터스시스템학과)
  • Received : 2010.09.24
  • Accepted : 2010.12.17
  • Published : 2010.12.31


Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.


Spatio-Temporal Pattern Mining;Optimal Path Search;Spatial-Temporal Optimal Moving Pattern(with Frequency&Weight) Algorithm;Spatial Conceptual Hierarchy


Supported by : 한국학술진흥재단


  1. O. Wolfson, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha and N. Rishe, "Tracking Moving Objects Using Database Technology in DOMINO", in proc. on The Fourth Workshop on Next Generation Information Technologies and Systems(NGITS), pp.112-119, July 1999.
  2. D. O. Kim, H. K. Kang, D. S. Hong, J. K. Yun and K. J. Han, "STMPE : An Efficient Movement Pattern Extraction Algorithm for Spatio-temporal Data Mining", in proc. on International Conference on Computational Science and Its Applications(ICCSA), pp.259-269, 2006.
  3. N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao and D. W. Cheung, "Mining, Indexing and Querying Historical Spatio-Temporal Data", in proc. on the International Conference on Knowledge Discovery and Data Mining, 2004.
  4. H. Cao, N. Mamoulis and D. W. Cheung, "Mining Frequent Spatio-Temporal Sequential Patterns", in proc. on the 5th IEEE International Conference on Data Mining(ICDM), pp.82-89, 2005.
  5. Y. Huang, L. Zhang and P. Zhang, "Finding Sequential Patterns from a Massive Number of Spatio-Temporal Events", SDM, SIAM, 2006.
  6. J. W. Lee, O. H. Paek and K. H. Ryu, "Temporal Moving Pattern Mining for Location-Based Service", The Journal of Systems and Software, Vol.73. 2004.
  7. J. Gudmundsson, M. V. Kreveld and B. Speckmann, "Efficient Detection of Motion Patterns in Spatio-Temporal Data Sets", in proc. on the 12th annual ACM international workshop on Geographic Information Systems(GIS), pp.250-257, 2004.
  8. G. Yavas, D. Katsaros, O. Ulusoy and Y. Manolopoulos, "A Data Mining Approach for Location Prediction in Mobile Environments", Data & Knowledge Engineering, Vol.54, pp.121-146, 2005.
  9. 이준욱, "위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사", 한국정보과학회 논문지, 제29권, 제5호, 2002.
  10. 고현, 김광종, 이연식, "R* Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법", 한국컴퓨터정보학회논문지, 제12권 2호, pp.231-242, 2007. 5
  11. 한선영, "시공간 이동 시퀀스 패턴 마이닝 기법", 이화여자대학교 대학원, 석사학위논문, 2006.
  12. 고현, 이연식, "이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법", 한국정보처리학회 논문지, 제16-D권, 제1호, 2009.
  13. 이연식, 박성숙, "시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사" 한국인터넷정보학회논문지, 제10권 제5호, pp.79-93, 2009.10