Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries

리튬이온전지용 TiO2 나노튜브 음전극 특성

  • Choi, Min Gyu (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
  • 최민규 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 김광만 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀)
  • Received : 2010.01.28
  • Accepted : 2010.02.24
  • Published : 2010.06.30


In this review, the studies on the electrochemical properties of $TiO_2$ nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated andanalyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of $338mAh\;g^{-1}$(x=1.01) was achieved by the nanotube with $TiO_2(B)$ phase, whereas the theoretical capacity of $TiO_2$ anode was $335mAh\;g^{-1}$(x=1) in the basis of $Li_xTiO_2$ as a product of electrochemical reaction between $TiO_2$ and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of $TiO_2$, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the $TiO_2$ nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.


$TiO_2$ Nanotube;Anode;Lithium-Ion Battery;Electrochemical Property


Supported by : 한국연구재단


  1. Tarascon, J.-M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001).
  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and van Schalkwijk, W., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nature Mater., 4, 366-377(2005).
  3. Bruce, P. G., Scrosati, B. and Tarascon, J.-M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Intern. Ed., 47, 2930-2946(2008).
  4. Balaya, P., Bhattacharyya, A. J., Jamnik, J., Zhukovskii, Y. F., Kotomin, E. A. and Maier, J., "Nano-Ionics in the Context of Lithium Batteries," J. Power Sources., 159, 171-178(2006).
  5. Meethong, N., Huang, H. Y. S., Carter, W. C. and Chiang, Y.-M., "Size-Dependent Lithium Miscibility Gap in Nanoscale $Li_{1-x}\;FePO_4$," Electrochem. Solid-State Lett., 10, A134-A138(2007).
  6. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163(1998).
  7. Bavykin, D. V., Friedrich, J. M. and Walsh, F. C., "Protonated Titanates and $TiO_2$ Nanostructured Materials: Synthesis, Properties, and Applications," Adv. Mater., 18, 2807-2824(2006).
  8. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Titania Nanotubes Prepared by Chemical Processing," Adv. Mater., 11, 1307-1311(1999).<1307::AID-ADMA1307>3.0.CO;2-H
  9. Chen, Q., Zhou, W., Du, G. and Peng, L.-M., "Titanate Nanotubes Made via Single Alkali Treatment," Adv. Mater., 14, 1208-1211(2002).<1208::AID-ADMA1208>3.0.CO;2-0
  10. Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X. and Zhang, Z., "Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotubed $H_2Ti_2O_4\;(OH)_2$," J. Mol. Catal. A: Chem., 217, 203-210(2004).
  11. Bavykin, D. V., Parmon, V. N., Lapkin, A. A. and Walsh, F. C., "The Effect of Hydrothermal Conditions on the Mesoporous Structure of $TiO_2$ Nanotubes," J. Mater. Chem., 14, 3370-3377(2004).
  12. Ma, R., Bando, Y. and Sasaki, T., "Direct Rolling Nanosheets into Nanotubes," J. Phys. Chem. B, 108, 2115-2119(2004).
  13. Zhang, S., Peng, L.-M., Chen, Q., Du, G. H., Dawson, G. and Zhou, W. Z., "Formation Mechanism of $H_2Ti_3O_7$ Nanotubes," Phys. Rev. Lett., 91, 256103(2003).
  14. Bavykin, D. V. and Walsh, F. C., "Elongated Titanate Nanostructures and Their Applications," Eur. J. Inorg. Chem., 977-997(2009).
  15. Kavan, L., Gratzel, M., Rathousky, J. and Zukal, A., "Nanocrystalline $TiO_2$(Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties," J. Electrochem. Soc., 143, 394-400(1996).
  16. Wagemaker, M., Borghols, W. J. H. and Mulder, F. M., "Large Impact of Particle Size on Insertion Reactions. A Case for Anatase $Li_xTiO_2$," J. Am. Chem. Soc., 129, 4323-4327(2009).
  17. Sudant, G., Baudrin, E., Larcher, D. and Tarascon, J.-M., "Electrochemical Lithium Reactivity with Nanotextured Anatase-Type $TiO_2$," J. Mater. Chem., 15, 1263-1269(2005).
  18. Hardwick, L. J., Holzapfel, M., Novak, P., Dupont, L. and Baudrin, E., "Electrochemical Lithium Insertion into Anatase-Type $TiO_2$: an In Situ Raman Microscopy Investigation," Electrochim. Acta, 52, 5357-5367(2007).
  19. Kavan, L., Rathousky, J., Gratzel, M., Shklover, V. and Zukal, A., "Surfactant-Templated $TiO_2$ (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures," J. Phys. Chem. B, 104, 12012-12020(2000).
  20. Kavan, L., Kalbac, M., Zukalova, M., Exnar, I., Lorenzen, V., Nesper, R. and Gratzel, M., "Lithium Storage in Nanostructured $TiO_2$ Made by Hydrothermal Growth," Chem. Mater., 16, 477-485(2004).
  21. Zukalova, M., Kalbac, M., Kavan, L., Exnar, I. and Gratzel, M., "Pseudocapacitive Lithium Storage in $TiO_2$(B)," Chem. Mater., 17, 1248-1255(2005).
  22. Wagemaker, M., van de Krol, R., Kentgens, A. P. M., van Well, A. A. and Mulder, F. M., "Two Phase Morphology Limits Lithium Diffusion in $TiO_2$ (Anatase): a Li-7 MAS NMR Study," J. Am. Chem. Soc., 123, 11454-11461(2001).
  23. Wagemaker, M., Kentgens, A. P. M. and Mulder, F. M., "Equilibrium Lithium Transport between Nanocrystalline Phases in Intercalated $TiO_2$ Anatase," Nature, 418, 397-399(2002).
  24. Wagemaker, M., Borghols, W. J. H., van Eck, E. R. H., Kentgens, A. P. M., Kearley, G. J. and Mulder, F. M., "The Influence of Size on Phase Morphology and Li-ion Mobility in Nanosized Lithiated Anatase $TiO_2$," Chem. Eur. J., 13, 2023-2028(2007).
  25. Kim, D. H., Yoon, J. H., Lee, K. S., Jung, Y.-H., Lee, B. R., Jang, J. S., Choi, D.-K., Kim, S.-J., Sun, Y.-K. and Lee, K. S., "Structural Characterization of Titanate Nanotubes for Lithium Storage," J. Nanosci. Nanotech., 8, 5022-5025(2008).
  26. Oh, S. W., Park, S.-H. and Sun, Y.-K., "Hydrothermal Synthesis of Nano-Sized $TiO_2$ Powders for Lithium Secondary Anode Materials," J. Power Sources., 161, 1314-1318(2006).
  27. Baudrin, E., Cassaignon, S., Koelsch, M., Jolivet, J.-P., Dupont, L. and Tarascon, J.-M., "Structural Evolution during the Reaction of Li with Nano-Sized Rutile Type $TiO_2$ at Room Temperature," Electrochem. Commun., 9, 337-342(2007).
  28. Jiang, C., Honma, I., Kudo, T. and Zhou, H., "Nanocrystalline Rutile $TiO_2$ Electrode for High-Capacity and High-Rate Lithium Storage," Electrochem. Solid-State Lett., 10, A127-A129(2007).
  29. Jiang, C., Wei, M., Qi, Z., Kudo, T., Honma, I. and Zhou, H., "Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase $TiO_2$ Electrode," J. Power Sources., 166, 239-243(2007).
  30. Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X. and Zhang, Z., "Study on Composition, Structure and Formation Process of Nanotube $Na_2Ti_2O_4(OH)_2$," Dalton Trans., 3898-3901(2003).
  31. Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F., Yang, Z. Y. and Wang, N., "Formation Mechanism of $TiO_2$ Nanotubes," Appl. Phys. Lett., 82, 281-283(2003).
  32. Morgado, E. Jr., de Abreu, M. A. S., Pravia, O. R. C., Marinkovic, B. A., Jardim, P. M., Rizzo, F. C. and Araujo, A. S., "A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content," Solid State Sci., 8, 888-900(2006).
  33. Ma, R., Fukuda, K., Sasaki, T., Osada, M. and Bando, Y., "Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations," J. Phys. Chem. B, 109, 6210-6214(2005).
  34. Kukovecz, A., Hodos, M., Horvath, E., Radnoczi, G., Konya, Z. and Kiricsi, I., "Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes," J. Phys. Chem. B, 109, 17781-17783(2005).
  35. Cortes-Jacome, M. A., Ferrat-Torres, G., Ortiz, L. F. F., Angeles-Chavez, C., Lopez-Salinas, E., Escobar, J., Mosqueira, M. L. and Toledo-Antonio, J. A., "In Situ Thermo-Raman Study of Titanium Oxide Nanotubes," Catal. Today, 126, 248-255(2007).
  36. Zhu, K. R., Yuan, Y., Zhang, M. S., Hong, J. M., Deng, Y. and Yin, Z., "Structural Transformation from $NaHTi_3O_7$ Nanotube to $Na_2Ti_6O_{13}$ Nanorod," Solid State Commun., 144, 450-453(2007).
  37. Thorne, A., Kruth, A., Tunstall, D., Irvine, J. T. S. and Zhou, W., "Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity," J. Phys. Chem. B, 109, 5439-5444(2005).
  38. Lan, Y., Gao, X., Zhu, H., Zheng, Z., Yan, T., Wu, F., Ringer, S. P. and Song, D., "Titanate Nanotubes and Nanorods Prepared from Rutile Powder," Adv. Funct. Mater., 15, 1310-1318(2005).
  39. Gajovic, A., Friscic, I., Plodinec, M. and Ivekovic, D., "High Temperature Raman Spectroscopy of Titanate Nanotubes," J. Mol. Struct., 924-926, 183-191(2009).
  40. Jung, H.-G., Oh, S. W., Ce, J., Jayaprakash, N. and Sun, Y.-K., "Mesoporous $TiO_2$ Nano Networks: Anode for High Power Lithium Battery Applications," Electrochem. Commun., 11, 756-759(2009).
  41. Wang, Z., Liu, S., Chen, G. and Xia, D., "Preparation and Li-Intercalation Properties of Mesoporous Anatase-$TiO_2$ Spheres," Electrochem. Solid-State Lett., 10, A77-A80(2007).
  42. Lee, D.-H., Park, J.-G., Choi, K. J., Choi, H.-J. and Kim, D.-W., "Preparation of Brookite-Type $TiO_2$/Carbon Nanocomposite Electrodes for Application to Li Ion Batteries," Eur. J. Inorg. Chem., 878-882(2008).
  43. Inaba, M., Oba, Y., Niina, F., Murota, Y., Ogino, Y., Tasaka, A. and Hirota, K., "$TiO_2$(B) as a Promising High Potential Negative Electrode for Large-Size Lithium-ion Batteries," J. Power Sources., 189, 580-584(2009).
  44. Zhou, Y., Cao, L., Zhang, F., He, B. and Li, H., "Lithium Insertion into $TiO_2$ Nanotube Prepared by the Hydrothermal Process," J. Electrochem. Soc., 150, A1246-A1249(2003).
  45. Gao, X. P., Lan, Y., Zhu, H. Y., Liu, J. W., Ge, Y. P., Wu, F. and Song, D. Y., "Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes," Electrochem. Solid-State Lett., 8, A26-A29(2005).
  46. Li, J., Tang, Z. and Zhang, Z., "Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes," Electrochem. Solid-State Lett., 8, A316-A319(2005).
  47. Xu, J., Jia, C., Cao, B. and Zhang, W. F., "Electrochemical Properties of Anatase $TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," Electrochim. Acta, 52, 8044-8047(2007).
  48. Kim, J. and Cho, J., "Rate Characteristics of Anatase $TiO_2$ Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature," J. Electrochem. Soc., 154, A542-A546(2007).
  49. Das, K., Panda, S. K. and Chaudhuri, S., "Solvent-Controlled Synthesis of $TiO_2$ 1D Nanostructures: Growth Mechanism and Characterization," J. Cryst. Growth., 310, 3792-3799(2008).
  50. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "$TiO_2$-B Nanowires," Angew. Chem. Intern. Ed., 43, 2286-2288(2004).
  51. Armstrong, A. R., Armstrong, G., Canales, J., Garcia, R. and Bruce, P. G., "Lithium-ion Intercalation into $TiO_2$-B Nanowires," Adv. Mater., 17, 862-865(2005).
  52. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "$TiO_2$-B Nanowires as Negative Electrodes for Rechargeable Lithium Batteries," J. Power Sources, 146, 501-506(2005).
  53. Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. and Scrosati, B., "$TiO_2$(B) Nanowires as an Improved Anode Material for Lithium-ion Batteries Containing $LiFePO_4$ or $LiNi_{0.5}Mn_{1.5}O_4$ Cahodes and a Polymer Electrolyte," Adv. Mater., 18, 2597-2600(2006).
  54. Wilkening, M., Lyness, C., Armstrong, A. R. and Bruce, P. G. "Diffusion in Confined Dimensions: $Li^+$ Transport in Mixed Conducting $TiO_2$-B Nanowires," J. Phys. Chem. C, 113, 4741-4744(2009).
  55. Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "Nanotubes with the $TiO_2$-B Structure," Chem. Commun., 2454-2456(2005).
  56. Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "$TiO_2$(B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries," Electrochem. Solid-State Lett., 9, A139-A143(2006).
  57. Tsai, M.-C., Chang, J.-C., Sheu, H.-S., Chiu, H.-T. and Lee, C.-Y., "Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process," Chem. Mater., 21, 499-505(2009).
  58. Tang, W., "Preparation of Anatase-Type $TiO_2$ Nanocrystal/Acetylene Black Composites by a Dry Process, and Their Electrochemical Lithium Insertion," J. Mater. Chem., 14, 3457-3461(2004).
  59. Yoon, S., Ka, B. H., Lee, C., Park, M. and Oh, S. M., "Preparation of Nanotube $TiO_2$-carbon Composite and Its Anode Performance in Lithium-ion Batteries," Electrochem. Solid-State Lett., 12, A28-A32(2009).
  60. Xu, J., Wang, Y., Li, Z. and Zhang, W. F., "Preparation and Electrochemical Properties of Carbon-Doped $TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," J. Power Sources, 175, 903-908(2008).
  61. Wang, Q., Wen, Z. and Li, J., "A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a $TiO_2$-B Nanowire Anode," Adv. Func. Mater., 16, 2141-2146(2006).
  62. Wang, Q., Wen, Z. and Li, J., "Carbon Nanotube/$TiO_2$ Nanotubes Hybrid Supercapacitor," J. Nanosci. Nanotech. 7, 3328-3331(2007).
  63. Brousse, T., Marchand, R., Taberna, P.-L. and Simon, P., "$TiO_2$(B)/Activated Carbon Non-Aqueous Hybrid System for Energy Storage," J. Power Sources, 158, 571-577(2006).
  64. Wei, M., Qi, Z., Ichihara, M., Honma, I. and Zhou, H., "Ultralong Single-Crystal $TiO_2$-B Nanowires: Synthesis and Electrochemical Measurements," Chem. Phys. Lett., 424, 316-320(2006).
  65. Wang, Q., Wen, Z. and Li, J., "Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional $TiO_2$ Nanoparticles," Inorg. Chem., 45, 6944-6949(2006).
  66. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P. and Zhu, H. Y., "Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods," J. Phys. Chem. C, 111, 6143-6148(2007).
  67. Wang, Y., Wu, M. and Zhang, W. F., "Preparation and Electrochemical Characterization of $TiO_2$ Nanowires as an Electrode Material for Lithium-ion Batteries," Electrochim. Acta, 53, 7863-7868(2008).