Detection of Pesticide Thiram in Plant Leafs Using Voltammetric at Nanotube Electrode

나노튜브전극을 사용한 전압전류법에 의한 식물잎에서 살충제 검출

  • Lee, Chang-Hyun (Division of General Education, Pyeongtaek University) ;
  • Ly, Suw-Young (Biosensor Research Institute, Seoul National University of Technology)
  • Received : 2010.09.07
  • Accepted : 2010.11.22
  • Published : 2010.12.31


Voltammetric diagnostics of pesticide thiram was studied in plant leafs in vivo fluid with DNA immobilized on a carbon nanotube electrode (DCE). Sensor properties of carbon nanotube (CE) and DNA immobilized nanotube were compared. DCE was more effective than CE in target detecting. The parameters such as pH strength, stripping accumulation, amplitude, and increment potential were examined to find the optimum condition for detection of pesticide thiram in a sesame leaf. The optimized conditions were as follows 550 Hz frequency, 0.15 V amplitude, 0.005 V increment potential, -1.2 V initial potential, 4.78 pH, 500 sec accumulation time. Under optimum condition, the detection limit of thiram was attained at 0.01ng/L.


Stripping voltammetry;Pesticide;DNA nanotube;Sesami leaf;Thiram


  1. Aburuna, H. D., 1988, Coordination chemistry in two dimensions: chemically modified electrodes, Coord. Chem. Rev., 86, 135.
  2. Amirav, A., Jing, H., 1998, Simultaneous pulsed flame photometric and mass spectrometric detection for enhanced pesticide analysis capabilities, Journal of Chromatography A, 814, 133-150.
  3. Ayyagari, M. S., Kamtekar, S., Pande, R., Marx, K. A., Kumer, J., Tripathy, S. K., Kaplan, D. L., 1995, Biosensors for pesticide detection based on alkaline phosphatasecatalyzed chemiluminescence, Materials Science and Engineering: C, 2, 191-196.
  4. Brecht, A., Gauglitz, G., 1997, Label free optical immunoprobes for pesticide detection, Analytica Chimica Acta, 347, 219-233.
  5. Campillo, N., Pealver., M., Hernandez- Cordoba, M., 2007, Pesticide analysis in herbal infusions by solid-phase microextraction and gas chromatography with atomic emission detection, Talanta, 71, 1417-1423.
  6. Cereser, C., Boge, S., Parvaz, P., Revol, A., 2001, An evaluation of thiram toxicity on cultured human skin fibroblasts, Toxicology, 162, 89-101.
  7. Chand, R. S., Gupta, B. D., 2007, Surface plasmon resonance based fiber-optic sensor for the detection of pesticide, Sensors and Actuators B, 123, 661-666.
  8. Cheng, X., Wang, Q., Zhang, S., Zhang, W., He, P., Fang, Y., 2007, Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamidemodified carbon paste electrode, Talanta, 71, 1083-1087.
  9. Ciucu, A. A., Negulescu, C., Baldwin, R. P., 2003, Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system, Biosensors and Bioelectronics, 18, 303-310.
  10. Cooper, J., Dobson, H., 2007, The benefits of pesticides to mankind and the environment, Crop Protection, 26, 1337-1348.
  11. Dutta, K., Bhattacharyay, D., A. Mukherjee, A., Setford, S. J., Turner, A. P. F., Sarkar, P., 2008, Detection of pesticide by polymeric enzyme electrodes, Ecotoxicology and Environmental Safety, 69, 556-561.
  12. Garaj-Vrhovac, V., Zeljezic, D., 2000, Evaluation of DNA damage in workers occupationally exposed to pesticides using single-cell gel electrophoresis (SCGE) assay Pesticide genotoxicity revealed by comet assay, Mutation Research, 469, 279-285.
  13. Gauthier, E., Fortier, I., Courchesne, F., Pepin, P., Mortimer, J., Gauvreau, D., 2001, Environmental pesticide exposure as a risk factor for Alzheimer’s disease: A case-control study, Environmental Research Section A, 86(1), 37-45.
  14. Huang, X., Sun, Y., Meng, F., Liu, J., 2004, New approach for the detection of organophosphorus pesticide in cabbage using SPME/SnO2 gas sensor: principle and preliminary experiment, Sensors and Actuators B, 102, 235-240.
  15. Khalili-Zanjani, M. R., Yamini, Y., Yazdanfar, N., Shariati, S., 2008, Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction-gas chromatography-flame photometric detection, Analytica Chimica Acta, 606(2), 202-208.
  16. Kim, G. Y., Shim, J. M., Kang, M. S., Moon, S. H., 2008, Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples, Journal of Hazardous Materials,156, 141-147.
  17. Landau-Ossondo, M., Rabia, N., Jos-Pelage, J., Marquet, L. M., Isidore, Y., Saint-Aime, C., M. Martin, M., Irigaray, P., Belpomme, D., 2009, ARTAC international research group on pesticides, Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer, Biomedicine & Pharmacotherapy, 63, 383-395.
  18. Lechuga, I. L. M., Lenferink, A. T. M., Kooyman, R. P. H., Greve, J., 1995, Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects, Sensors and Actuators B, 24-25, 762-765.
  19. Lever, J. H., 2002, Paget’s disease of bone in Lancashire and Arsenic pesticide in cotton mill wastewater: A Speculative Hypothesis, Bone, 31(3), 434-436.
  20. Manisankar, P., Viswanathan, S., Pusphalatha, A. M., Rani, C., 2005, Electrochemical studies and square wave stripping voltammetry of five common pesticides on poly 3,4-ethylenedioxythiophene modified walljet electrode, Analytica Chimica Acta, 528, 157-163.
  21. Manisankar, P., Sundari, P. L. A., Sasikumar, R., Palaniappan, S. P., 2008, Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode, Talanta, 76, 1022-1028.
  22. Perez- Ruiz, T., Martinez- Lozano, C., Tomas, V., Martın, J., 2005, High-performance liquid chromatographic assay of phosphate and organophosphorus pesticides using a post-column photochemical reaction and fluorimetric detection, Analytica Chimica Acta, 540, 383-391.
  23. Radi, A., 2005, Accumulation and trace measurement of chloroquine drug at DNA-modified carbon paste electrode, Talanta, 65, 271-275.
  24. Tuovinen, K., Paakkanen, H., Hanninen, O., 2000, Detection of pesticides from liquid matrices by ion mobility spectrometry, Analytica Chimica Acta, 404, 7-17.
  25. Wu, H. Z., Lee, Y. C., Lin, T. K., Shih, H. C., Chang, F. L., 2009, Development of anamperometric microbiodetector for pesticide monitoring and detection, Journal of the Taiwan Institute of Chemical Engineers, 40, 113-122.
  26. Yang, G., White, I. M., Fan, X., 2008, An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides, Sensors and Actuators B, 133, 105-112.
  27. Zejli, H., Hidalgo-Hidalgo, J. L., Naranjo-Rodriguez, I., Liu, B., Temsamani, K. R., Marty, J. L., 2008, Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides, Talanta, 77(1), 217-221.