DOI QR코드

DOI QR Code

Estimating the Determinants for Rate of Arrearage in Domestic Bank: A Panel Data Model Approach

패널 데이터모형을 적용한 국내일반은행 연체율 결정요인 추정에 관한 연구

  • Kim, Hee-Cheu (Deptment of Industrial Management Engineering, Namseoul University) ;
  • Park, Hyoung-Keun (Deptment of Electronic Engineering, Namseoul University)
  • 김희철 (남서울대학교 산업경영공학과) ;
  • 박형근 (남서울대학교 전자공학과)
  • Published : 2010.01.31

Abstract

In respect complication of group, rate of arrearage in domestic bank is composed of various factors. This paper studies focus on estimating the determinants of the rate of arrearage in domestic bank using panel data model. The volume of analysis consist of 3 groups(loaned patterns of enterprise, housekeeping, credit card). Analyzing period be formed over a 54 point(2005. 1~ 2009. 06). In this paper dependent variable setting up rate of arrearage in domestic bank, explanatory(independent) variables composed of the consumer price index, composite stock price index, rate of exchange, the coincident composite index, national housing bonds and employment rate. The result of estimating the rate of arrearage in domestic bank provides empirical evidences of significance positive relationships between the consumer price index However this study provides empirical evidences of significance negative relationships between the coincident composite index and the composite stock price index. The explanatory variables, that is, rate of exchange, national housing bonds and the employment rate are non-significance variables of negative factor. Implication of these findings are discussed for content research and practices.

Keywords

Random effect model;Fixed effect model;One-Way Error Component Regression Model

References

  1. http://www.hani.co.kr (한겨레신문, 2009.08.31)
  2. http://www.focus.co.kr (Focus신문, 2009.09.01)
  3. 이규복, "최근 중소기업 대출 동향 및 시사점", 금융포커스(주간 금융 브리프), 17권30호, 한국금융연구원, 2008.7.260-8.1.
  4. 김대호, 문성주. "중/소 벤처기업의 신용대출 활성화방안", 재무관리논총, 17(1): pp.133-155, 2005.
  5. 강종만, "최근 중소기업 대출 증가의 문제점", 금융포커스(주간 금융 브리프), 10권24호, 한국 금융연구원, 2007.6.2-6.8.
  6. 강종만, "은행의 가계 대출 비중 및 수익성 관리", 금융 포커스(주간 금융 브리프), 17권34호, 한국 금융연구원, 2008.8.30-9.5.
  7. 송수영 "불완전 정보와 신용카드 이자율 ", 재무관리연구, 22권2호, pp.213-226, 2005.
  8. 위정범, 백홍기. "금리정책과 부동산담보대출 연체율", 기업경영연구, 15(2): 17-40, 2008.
  9. 심종원, 정의철, 정현정. "주택담보대출 연체율 결정요인에 관한 연구", 부동산학연구, 15집(2호): 81-96, 2009.
  10. 김희철, 신현철, "패널 데이터모형을 적용한 소매업 매출액 결정요인 추정에 관한 연구", 정보, 보안 논문지, 8(3):83-9, 2008.
  11. 보도자료. "08.12말 국내은행의 대출채권 연체율 현황", 금융감독원, 2009,1,23.
  12. Green. W. H. "LIMDEP : A user's manual", Plainview. New York : Econometric Software. Inc, 1998.
  13. Ashenfelter, O., Zimmerman, D., & Levine, P. B., "Statistics and econometrics: Methods and applications". New York : John Wiley & Sons, 2003.
  14. Hausman, J. & Taylor, W., "Panel data and unobservable individual effects". Econometrica 49(6): Econometrica, 49(6): 1377-1398,1981. https://doi.org/10.2307/1911406
  15. http://www.kosis.kr/(통계청, 국가통계포털 사이트)
  16. http://ecos.bok.or.kr(한국은행, 경제통계시스템)