DOI QR코드

DOI QR Code

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor

  • Thangapandian, Sundarapandian (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Krishnamoorthy, Navaneethakrishnan (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • John, Shalini (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Sakkiah, Sugunadevi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Lazar, Prettina (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Lee, Yu-No (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
  • Published : 2010.01.20

Abstract

Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.

References

  1. Steven, M. F.; Tom, I. B.; Richard, R. N.; Edward, M. R.; Jean-Phillipe, P.; Anthony, P. D.; Michael, S.; Anthony, J. H. Pharmacol. Rev. 2005, 57, 279. https://doi.org/10.1124/pr.57.2.5
  2. Hofstra, C. L.; Desai, P. J.; Thurmond, R. L.; Fung-Leung, W. P. J. Pharmacol. Exp. Ther. 2003, 305, 1212. https://doi.org/10.1124/jpet.102.046581
  3. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L. Pharmacol. Rev. 1997, 49, 253.
  4. Maria, J. M.; Silvio, G. J. TRENDS in Pharmacological Sciences 2001, 221, 368.
  5. Louis, M. L. Mol. Biotechnol. 2008, 39, 239. https://doi.org/10.1007/s12033-008-9031-1
  6. Willem, S.; Ineke van, W.; Adriaan, P. I. Med. Res. Rev. 2005, 25, 398. https://doi.org/10.1002/med.20031
  7. Prather, L. P. Sci. STKE. 2004, 215, 1.
  8. Govoni, M.; Bakker, R. A.; Wetering, I.; Smit, J. M.; Menge, M. B. P.; Timmerman, H.; Elz, S.; Schunack, W.; Leurs, R. J. Med. Chem. 2003, 46, 5812. https://doi.org/10.1021/jm030936t
  9. Tao, Y. Pharmacol. Ther. 2008, 120, 129. https://doi.org/10.1016/j.pharmthera.2008.07.005
  10. CATALYST 4.10 User Guide. 2005 Accelrys Inc., San Diego, CA, USA.
  11. Brooks, B. R.; Brucolleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187. https://doi.org/10.1002/jcc.540040211
  12. Smellie, A.; Teig, S. L.; Towbin, P. J. Comput. Chem. 1995, 16, 171. https://doi.org/10.1002/jcc.540160205
  13. Smellie, A.; Kahn, S. D.; Teig, S. J. Chem. Inf. Comput. Sci. 1995, 35, 285. https://doi.org/10.1021/ci00024a018
  14. Smellie, A.; Kahn, S. D.; Teig, S. J. Chem. Inf. Comput. Sci. 1995, 35, 295. https://doi.org/10.1021/ci00024a019
  15. Sakkiah, S.; Krishnamoorthy, N.; Gajendrarao, P.; Thangapandian, S. Lee, Y.; Suh, J. K.; Kim, H. H.; Lee, K. W. Bull. Korean Chem. Soc. 2009, 30, 1152-1156. https://doi.org/10.5012/bkcs.2009.30.5.1152
  16. Lee, Y.; Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2007, 28, 561-566. https://doi.org/10.5012/bkcs.2007.28.4.561
  17. Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. Bioinformatics 2006, 22, 195. https://doi.org/10.1093/bioinformatics/bti770
  18. Kopp, J.; Schwede, T. Nucleic Acids Research 2004, 32, D230. https://doi.org/10.1093/nar/gkh008
  19. Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M. C. Nucleic Acids Research 2003, 31, 3381. https://doi.org/10.1093/nar/gkg520
  20. Guex, N.; Peitsch, M. C. Electrophoresis 1997, 18, 2714. https://doi.org/10.1002/elps.1150181505
  21. Peitsch, M. C. Nat. Biotechnol. 1995, 13, 658. https://doi.org/10.1038/nbt0795-658
  22. Laskowski, R. A.; MacArthur, M. W.; Moss, D.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283. https://doi.org/10.1107/S0021889892009944
  23. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M. J. Mol. Graph. Model 2003, 21, 289. https://doi.org/10.1016/S1093-3263(02)00164-X
  24. Anton, M. T.; Marc, J. D.; Hendrik, T.; Gabrielle, M. D. Quantitative Structure-Activity Relationships 2008, 11, 348. https://doi.org/10.1002/qsar.2660110307
  25. Bharatham, N.; Bharatham, K.; Lee, K. W. J. Mol. Graph. Model 2007, 25, 813. https://doi.org/10.1016/j.jmgm.2006.08.002
  26. Robert, K.; Zoltan, K.; Gyorgy, M. K. European J. Med. Chem. 2004, 39, 959. https://doi.org/10.1016/j.ejmech.2004.07.009
  27. Lipinski, C. A.; Lobbardo, F.; Dominy, B. W.; Feeny, P. J. Adv. Drug. Delivery Rev. 1997, 23, 3. https://doi.org/10.1016/S0169-409X(96)00423-1
  28. Venkatapathy, R.; Moudgal, C. J.; Bruce, R. M. J. Chem. Inf. Comput. Sci. 2004, 44, 1623. https://doi.org/10.1021/ci049903s
  29. Kerstin, W.; Anton, M. T.; Martine, J. S.; Ronald, K.; Timmerman, H.; Rob, L. J. Biol. Chem. 1999, 274, 29994. https://doi.org/10.1074/jbc.274.42.29994
  30. Bissantz, C.; Bernard, P.; Hibert, M.; Rognan, D. Proteins 2003, 50, 5. https://doi.org/10.1002/prot.10237

Cited by

  1. Molecular modelling study on human histamine H1 receptor and its applications in virtual lead identification for designing novel inverse agonists vol.37, pp.2, 2011, https://doi.org/10.1080/08927022.2010.524645
  2. 3D-QSAR based pharmacophore modeling and virtual screening for identification of novel pteridine reductase inhibitors vol.18, pp.5, 2012, https://doi.org/10.1007/s00894-011-1187-0
  3. Classical and 3D QSAR studies on inverse agonists of human histamine H1 receptor vol.38, pp.13, 2012, https://doi.org/10.1080/08927022.2012.696638
  4. A Bioinformatics Search for Selective Histamine H4 Receptor Antagonists Through Structure-Based Virtual Screening Strategies vol.79, pp.5, 2012, https://doi.org/10.1111/j.1747-0285.2012.01336.x
  5. Computational Analysis of Structure-Based Interactions for Novel H1-Antihistamines vol.17, pp.1, 2016, https://doi.org/10.3390/ijms17010129