Physical and Chemical Properties of Soil in Jang-San Wetland, Busan Metropolitan City

부산시 장산습지 토양의 물리적 및 화학적 특성

  • Cha, Eun-Jee (Department of Geological Sciences, Pusan National University) ;
  • Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University) ;
  • Kim, Hyun-Ji (K-water institute, Korea Water Resources Corporation) ;
  • Lee, Jeong-Hwan (Department of Geological Sciences, Pusan National University) ;
  • Ok, Soon-Il (Department of Geological Sciences, Pusan National University)
  • 차은지 (부산대학교 지구환경시스템학부) ;
  • 함세영 (부산대학교 지구환경시스템학부) ;
  • 김현지 (한국수자원공사) ;
  • 이정환 (부산대학교 지구환경시스템학부) ;
  • 옥순일 (부산대학교 지구환경시스템학부)
  • Received : 2010.08.16
  • Accepted : 2010.10.11
  • Published : 2010.11.30


This study examined the physical and chemical properties of soil in Jang-San wetland in Busan Metropolitan City. The wetland covers wide and flat area comparing to its outside. The samples of the wetland soil were collected and analyzed in order to identify the profiles and chemical properties. According to the analyses of soil moisture and particle size distribution, the wetland soil mostly belongs to sandy loam with the soil moistures of 14.9-153.2%. The soil profiles are configured with O, A, B, and C horizons from the land surface. The organic matter content (2.38-16.7%) at most sampling locations decreases downwardly with the highest at 0-20 cm depth. The organic matter content has a good positive relationship with soil moisture content. According to X-ray diffraction analysis, the wetland soils contain quartz and feldspar (the main components of rhyolite porphyry) as well as montmorillonite, gibbsite, and kaolinite (the weathered products of feldspar). The wetland soil displays the highest iron concentration (average 22,052 mg/kg), indicating oxidation of iron. High concentrations of potassium (average 17,822 mg/kg) and sodium (average 5,394 mg/kg) originate from the weathering of feldspar. Among anions, sulfate concentration is highest with average 9.21 mg/kg that may originate from sulfate minerals and atmosphere.


Jang-San wetland;Soil;Physical and chemical properties;Organic content;Weathering


  1. 강동환, 김성수, 정휘제, 권병혁, 김일규, 2007, 달포늪의 퇴적물과 유기물함량 특성 연구, 한국습지학회지, 9(3), 1-12.
  2. 구자용, 서종철, 2007, 위성영상과 지리정보를 이용한 우리나라의 산지습지 가능지 추출, 한국지형학회지, l4(1), 53-65.
  3. 김귀곤, 2003, 습지와 환경-자연과 사람이 만드는 습지, 아카데미서적, 150.
  4. 김현지, 2010, 부산시 장산 산지습지의 형성과 관련된 지질학적 및 수리지질학적 특성 연구, 석사학위논문, 부산대학교, 162.
  5. 도윤호, 문태영, 주기재, 2007, 습지지표종으로서 딱정벌레류를 이용한 부산, 경남 주요 습지의 특성 및 변화 관찰, 한국환경생태학회지, 2(1), 22-29.
  6. 손치무, 이상만, 김영기, 김상욱, 김형식, 1978, 한국지질도 동래.월래도폭 (1:50,000) 및 설명서, 자원개발연구소, 9.
  7. 신영호, 김성환, 박수진, 2005, 신불산 산지습지의 지화학적 특성과 역할, 한국지형학회지, 12(1), 133-149.
  8. 정연숙, 2006, 강원도 산지습지의 분포, 생태계 특성 및 보전방안-인제, 양구 및 평창군을 중심으로, 강원도 지역환경기술개발센터.
  9. 주위홍, 구본학, 2006, 습지 유형 분류 체계별 습지 분류 특성-두만강과 한강을 사례로, 한국환경복원녹화기술학회지, 9(9), 152-161.
  10. 천미연, 2008, 범람원에 형성된 호소성 습지에 관한 연구-낙동강 중류를 사례로, 한국지역지리학회지, 14(1), 27-39.
  11. Bragg, O. M., 2002, Hydrology of peat-forming wetlands in Scotland, Sci. The Total Environ., 294, 111-129.
  12. Brinson, M. M., 1993, Changes in the functioning of wetlands along environmental gradients, Wetlands, 13(2), 65-74.
  13. Cole, C. A., Cirmo, C. P., Wardrop, D. H., Brooks, R. P., Peterson-Smith, J., 2008, Transferability of an HGM wetland classification scheme to a longitudinal gradient of the central Appalachian Mountains: initial hydrological results, Wetlands, 28(2), 439-449.
  14. Eser, P., Rosen, M. R., 1999, The influence of groundwater hydrology and stratigraphy on the hydrochemistry of Stump Bay, South Taupo Wetland, New Zealand, J. Hydrol., 220, 27-47.
  15. Fork, R. L., 1955, Student operator error in determination of roundness, sphericity, and grain size, Journal of Sedimentary Research, 25(4), 297-301.
  16. Inman, D. L., 1952, Measures for describing the size distribution of sediments, J. Sed. Retrol., 22(3), 125-145.
  17. Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Mccaughey, H., Roulet, N. T., 2005, Hydrological effects on carbon cycles of Canada's forest and wetlands, Tellus, 58B, 16-30.
  18. Loh, P. S., Reeves, A. D., Harvey, S. M., Overnell, J., Miller, A. E. J., 2007, The fate ofterrestrial organic matter in two Scottish sea lochs, Estuarine. Coastal and Shelf Science, 1-14.
  19. Myers, R., 1999, Hydraulic properties of south Florida wetland peats, thesis of University of Florida, 146.
  20. Ramsar, 2006, The Ramsar convention manual: A guide to the convention on wetlands, 4th ed., Ramsar Convention Secretariat, 63-64.
  21. Ramsar, 2007, Managing wetlands: Frameworks for managing wetlands of international importance and other wetland sites, Ramsar handbooks for the wise use of wetlands, vol. 16, 3rd ed., 92.
  22. Requejo, A. G., Brown, J. S., Boehm, P. D., 1986, Lignin geochemistry of sediments from the Narragansett Bay Estuary, Geochimica et Cosmochimica Acta, 50(12), 2707-2717.
  23. Rossell, I. M., Moorhead, K. K., Alvarado, H., Warren, R. J., 2009, Succession of a Southern Appalachian Mountain Wetland Six Years following Hydrologic and Microtopographic Restoration, Restoration Ecology, 17(2), 205-214.
  24. Ruttenberg, K. C., Goni, M. A., 1997, Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter, Marine Geology, 139, 123-145.
  25. Trask, P. D., 1932, Origin and environment of source sediments of petroleum, Houston, Gulf Pub. Co., 323p.
  26. U.S. Department of Agriculture (USDA), 1993, Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
  27. Woods, S. W., MacDonald, L. H., Westbrook, C. J., 2006, Hydrologic interactions between an alluvial fan and a slope wetland in the central Rocky Mountains, USA, Wetlands, 26(1), 230-243.[230:HIBAAF]2.0.CO;2