Isolation and Production of Antibiotic Substance from Streptomyces sp. S-1110 Antagonistic to Multiple Apple Mold Diseases

사과 곰팡이병에 길항하는 Streptomyces sp. S-1110의 분리 및 길항 물질의 생산

  • Shin, Jin-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Eun-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Sun-Ji (School of Applied Biosciences, Kyungpook National University) ;
  • Rhee, In-Koo (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
  • 신진호 (경북대학교 응용생명과학부) ;
  • 김은정 (경북대학교 응용생명과학부) ;
  • 박선지 (경북대학교 응용생명과학부) ;
  • 이인구 (경북대학교 응용생명과학부) ;
  • 신재호 (경북대학교 응용생명과학부)
  • Published : 2009.09.30


Concerning about the negative impact of chemical pesticides on human health and the environment has been leading to dramatic increase of research in natural product-based pesticides. An antagonistic bacterium Streptomyces sp. S-1110 was isolated from apple farm soil. The culture filtrate of the strain showed growth inhibition effects to apple pathogenic fungi, Botryosphaeria dothidea, Colletotrichum gloeosporioides and Rhizoctonia solani. The unidentified antibiotic substances from the strain kept antagonistic activity either after heat treatment at $121^{\circ}C$ for 1 h or pH treatment at range of pH 3 - pH 12 for 24 h. The substances also prevented apple fruit from spoiling by inoculated two pathogenic molds, B. dothidea and C. gloeosporioides. These results suggested that the isolated strain would be useful as a biocontrol agent to control apple spoiling occurred from mold.


  1. Kim H. Y. (2000). The Perspectives of Apple Industry for 21C in Korea, KOR. J. Hort. Sci. & Technol. 18(2), pp.140
  2. Kim, E., Kim, H. H., Lee, H. Y., and Uhm, J. Y. (1997). Reduction of Inoculum Density in Apple White Rot by the Coating of Diseased Stems with Polymers, Plant. Pathlol. J. 13(5), 349-357
  3. Lee, D. H., Kim, D. A. Lee, S. W., Choi, K. H., and Uhm, J. Y. (2004). Resent Status of Apple Diseases in Major Fruit Producing Areas of Korea('92~'00), KOR. J. Hort. Sci. & Technol. 22(sI), pp.131
  4. Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S.J., and Chung, H. S. (1993) Detailed Survey of Apple and Pear Diseases in Major Fruit Producing Areas of Korea(´88 ~´92), Plant. Pathlol. J. 9(1), 47-51
  5. Kim, Y. K., Lee, S. D., Ryu, J. G., and Ryu, J. D. (2003) Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens, Res. Plant Dis. 9(4), 229-236
  6. Peighamy-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., and Behboudi, K. (2008) Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple, Commun. Agric. Appl. Biol. Sci. 73(2), 249-255
  7. Yu, T., Chen, J., Lu, H., and Zheng, X. (2009) Indole-3-Acetic Acid Improves Postharvest Biological Control of Blue Mold Rot of Apple by Cryptococcus laurentii, Phytopathol. 99(3), 258-264
  8. El-Ghaouth, A., Smilanick, J. L., Wisniewski, M., and Wilson, C. L. (2000) Improved Control of Apple and Citrus Fruit Decay with a Combination of Candida saitoana and 2-Deoxy-D-Glucose, Plant Dis. 84(3), 249-253
  9. Janisiewicz, W. J., Tworkoski, T. J., and Kurtzman, C. P. (2001) Biocontrol Potential of Metchnikowia pulcherrima Strains Against Blue Mold of Apple, Phytopathol. 91(11), 1098-1108
  10. Ikeda, H., Kotaki, H., Tanaka, H., and Ōmura, S. (1988) Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob, Agents Chemother. 32, 282-284
  11. Skaar, I. and Stenwig, H. (1996) Malt-yeast extractsucrose agar, a suitable medium for enumeration and isolation of fungi from silage, Appl. Environ. Microbiol. 62(10), 3614-3619
  12. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace N. R. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. U S A 82(20), 6955-6959
  13. Iwasa, T., Higashide, E., and Shibata, M. (1971) Studies of validamycins, new antibiotics. 3. Bioassay methods for the determination of validamycin, J. Antibiot. 24(2),114-118
  14. Raaijmakers, J., Vlami, M., and de Souza, J. (2002) Antibiotic production by bacterial biocontrol agents, Antonie. van Leeuwenhoek 81(1), 537-547
  15. Dayan, F. E., Cantrell, C. L., and Duke, S. O. (2009) Natural products in crop protection, Bioorg. Med. Chem. 17(12), 4022-4034
  16. Rifaat, H. M. and Kansoh, A. L. (2004) Streptomyces virginiae: Taxonomy, identification and biological activities, Arab J. Biotechnol. 8(1), 29-34
  17. Miyashiro, S., Ando, T., Hirayama, K., Kida, T., Shibai, H., Murai, A., Shiio, T., and Udaka S. (1983) New streptothricin-group antibiotics, AN-201 I and II. Screening, fermentation, isolation, structure and biological activity, J. Antibiot. 36(12), 1638-1643
  18. Kunihiro, S. and Kaneda, M. (2003) Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698SY2, J. Antibiot. 56(1), 30-33
  19. Watve, M., Tickoo, R., Jog, M., and Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol. 176(5), 386-390