INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban (DEPT OF MATHEMATICS, FACULTY OF SCIENCE, KING KHALID UNIV.)
  • Received : 2009.01.16
  • Accepted : 2009.02.20
  • Published : 2009.03.25

Abstract

This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

References

  1. Casten R. G. , Holland C. F., Stability properties of solutions to systems of reaction-diffusion equations, SIAAM J. Appl. Math., 33 (1977) 353-364. https://doi.org/10.1137/0133023
  2. Cavani M. Farkas M. Bifurcation in a predator-prey model with memory and diffusion II: Turing bifurcation. Acta Math. Hungar. 63 (1994) 375-393. https://doi.org/10.1007/BF01874463
  3. Chattopadhyay J., Sarkar, A.K., Tapaswi, P.K., Effect of cross-diffusion on a diffusive prey-predator system-a nonlinear analysis. J. Biol. Sys. 4(1996) 159-169. https://doi.org/10.1142/S0218339096000120
  4. Farkas M. Dynamical Models in Biology, Academic Press, 2001.
  5. Farkas M. Two ways of modeling cross diffusion, Nonlinear Analysis, TMA., 30 (1997) 1225-1233. https://doi.org/10.1016/S0362-546X(96)00161-7
  6. Freedman, H.I., Shukla, J.B., The effect of a predator resource on a diffusive predator-prey system. Nat. Res. Model. 3(3) (1989) 359-383. https://doi.org/10.1111/j.1939-7445.1989.tb00086.x
  7. Murray J. D. Mathematical Biology, Berlin, Springer-Verlag, 1989.
  8. Okubo A. Diffusion and Ecological Problems: Models, Springer-Verlag, Berlin, 1980.
  9. Okubo, A., Levin S. A. Diffusion and Ecological Problems: Modern Perspectives, Second Edition (Springer, Berlin), 2000.
  10. Takeuchi Y. Global Dynamical Properties of Lotka-Volterra system, World Scientific, 1996.
  11. Turing A. M. The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London B237, (1953) 37-72.
  12. Turing A. M. The chemical basis of morphogenesis, Bull. Math. Biol. 52 (1990) 153-197. https://doi.org/10.1007/BF02459572