# VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

• Published : 2009.10.31

#### Abstract

In this paper, we develop a reliable algorithm which is called the variation of parameters method for solving sixth-order boundary value problems. The proposed technique is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any perturbation, discritization, linearization or restrictive assumptions. Moreover, the method is free from the identification of Lagrange multipliers. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested technique.

#### References

1. R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, world scientific, Singapore, 1986.
2. G. Akram and S. S. Siddiqi, Solution of sixth order boundary value problems using non-polynomial spline technique, Appl. Math. Comput. 181 (2006), no. 1, 708–720. https://doi.org/10.1016/j.amc.2006.01.053
3. P. Baldwin, Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods, Phil, Trans. Roy. Soc. Lond. A 322 (1987), no. 1566, 281–305. https://doi.org/10.1098/rsta.1987.0051
4. P. Baldwin, Localized instability in a Benard layer, Appl. Aal. 24 (1987), no. 1-2, 117-156
5. A. Boutayeb and E. H. Twizell, Numerical methods for the solution of special sixth-order boundary value problems, Int. J. Comput. Math. 45 (1992), 207–233. https://doi.org/10.1080/00207169208804130
6. S. Chandrasekhar, Hydrodynamics and Hydromagntic Stability, Dover, New York, 1981.
7. M. M. Chawla and C. P. Katti, Finite difference methods for two-point boundary-value problems involving higher order differential equations, BIT 19 (1979), 27-33 https://doi.org/10.1007/BF01931218
8. Y. Cherrauault and G. Saccomandi, Some new results for convergence of G. Adomian's method applied to integral equations, Math. Comput. Modeling 16 (1992), no. 2, 85-93 https://doi.org/10.1016/0895-7177(92)90009-A
9. M. E. Gamel, J. R. Cannon, and A. I. Zayedm, Sinc-Galerkin method for solving linear sixth order boundary value problems, Appl. Math. Comput. 73 (2003), 1325-1343. https://doi.org/10.1090/S0025-5718-03-01587-4
10. G. A. Glatzmaier, Numerical simulations of stellar convection dynamics at the base of the convection zone, geophysics. Fluid Dynamics 31 (1985), 137-150. https://doi.org/10.1080/03091928508219267
11. J. H. He, Variational approach to the sixth order boundary value problems, Appl. Math. Comput. 143 (2003), 235-236 https://doi.org/10.1016/S0096-3003(02)00381-8
12. W. X. Ma and Y. You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc. 357 (2004), 1753-1778 https://doi.org/10.1090/S0002-9947-04-03726-2
13. W. X. Ma and Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos, Solitons & Fractals 22 (2004), 395-406. https://doi.org/10.1016/j.chaos.2004.02.011
14. S. T. Mohyud-Din and M. A. Noor, Homotopy perturbation method for solving partial differential equations, Zeitschrift fur Naturforschung A 64a (2009), 157–170
15. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, On the coupling of polynomials with correction functional, Int. J. Mod. Phys. B (2009).
16. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Some relatively new techniques for nonlinear problems, Math. Prob. Eng. 2009 (2009), Article ID 234849, 25 pages, doi:10.1155/2009/234849. https://doi.org/10.1155/2009/234849
17. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Travelling wave solutions of seventh-order generalized KdV equations using He's polynomials, Int. J. Nonlin. Sci. Num. Sim. 10 (2009), no. 2, 223–229
18. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for solving partial differential equations, Int. J. Mod. Phys. B (2009)
19. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for differential equations, Wd. Appl. Sci. J. 6 (2009), no. 10, 1372–1376
20. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameter technique for Thomas-Fermi and fourth-order singular parabolic equations, Int. J. Mod. Phys. B (2009)
21. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Ma's variation of parameters method for Burger's and telegraph equations, Int. J. Mod. Phys. B (2009)
22. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for second-order integro-differential equations and coupled systems, Wd. Appl. Sci. J. 6 (2009), no. 9, 1298–1303
23. M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for solving sixthorder boundary value problems, Comput. Math. Appl. 55 (2008), no. 12, 2953–2972 https://doi.org/10.1016/j.camwa.2007.11.026
24. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials, Int. J. Nonlin. Sci. Num. Simul. 9 (2008), no. 2, 141-157.
25. M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for nonlinear higher-order boundary value problems, Int. J. Nonlin. Sci. Num. Simul. 9 (2008), no. 4, 395-408
26. M. A. Noor, S. T. Mohyud-Din, and A. Waheed, Variation of parameters method for solving fifth-order boundary value problems, Appl. Math. Inf. Sci. 2 (2008), 135-141.
27. J. I. Ramos, On the variational iteration method and other iterative techniques for nonlinear differential equations, Appl. Math. Comput. 199 (2008), no. 1, 39-69 https://doi.org/10.1016/j.amc.2007.09.024
28. S. S. Siddiqi and E. H. Twizell, Spline solutions of linear sixth-order boundary value problems, Int. J. Comput. Math. 60 (1996), 295-304 https://doi.org/10.1080/00207169608804493
29. J. Toomore, J. P. Zahn, J. Latour, and E. A Spiegel, Stellar convection theory II: singlemode study of the secong convection zone in A-type stars, Astrophs. J. 207 (1976), 545-563 https://doi.org/10.1086/154522
30. E. H. Twizell, Numerical methods for sixth-order boundary value problems, in: numerical Mathematics, Singapore, International Series of Numerical Mathematics, vol. 86, Birkhauser, Basel (1988), 495-506
31. E. H. Twizell and A. Boutayeb, Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer Eigen value problem, Proc. Roy. Soc. Lond. A 431 (1990), 433-50 https://doi.org/10.1098/rspa.1990.0142
32. A. M. Wazwaz, The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. Math. Comput. 118 (2001), 311-325. https://doi.org/10.1016/S0096-3003(99)00224-6

#### Cited by

1. VARIATION OF PARAMETERS METHOD FOR SOLVING A CLASS OF EIGHTH-ORDER BOUNDARY-VALUE PROBLEMS vol.09, pp.02, 2012, https://doi.org/10.1142/S0219876212400269
2. Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls vol.7, 2017, https://doi.org/10.1016/j.rinp.2016.12.020
3. Deficient discrete cubic spline solution for a system of second order boundary value problems vol.66, pp.4, 2014, https://doi.org/10.1007/s11075-013-9763-2
4. Variation of parameters method with an auxiliary parameter for initial value problems 2017, https://doi.org/10.1016/j.asej.2016.09.014
5. Effects on magnetic field in squeezing flow of a Casson fluid between parallel plates vol.29, pp.1, 2017, https://doi.org/10.1016/j.jksus.2015.03.006
6. MHD squeezing flow between two infinite plates vol.5, pp.1, 2014, https://doi.org/10.1016/j.asej.2013.09.007
7. Effects of Velocity Slip on MHD Flow of a Non-Newtonian Fluid in Converging and Diverging Channels vol.2, pp.4, 2016, https://doi.org/10.1007/s40819-015-0071-5
8. An efficient algorithm on time-fractional partial differential equations with variable coefficients pp.2014, 2014, https://doi.org/10.5339/connect.2014.7
9. Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks 2017, https://doi.org/10.1016/j.aej.2017.03.031
10. Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels vol.224, 2016, https://doi.org/10.1016/j.molliq.2016.10.073
11. On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates vol.53, pp.2, 2014, https://doi.org/10.1016/j.aej.2014.02.002
12. Analysis of magnetohydrodynamic flow and heat transfer of Cu–water nanofluid between parallel plates for different shapes of nanoparticles 2016, https://doi.org/10.1007/s00521-016-2596-x
13. Variation of Parameters Method for Heat Diffusion and Heat Convection Equations vol.3, pp.1, 2017, https://doi.org/10.1007/s40819-015-0098-7
14. Variation of Parameters Solution for Two Dimensional Flow of a Viscous Fluid Between Dilating and Squeezing Channel with Permeable Walls vol.3, pp.2, 2017, https://doi.org/10.1007/s40819-016-0183-6
15. An Efficient Algorithm for Some Highly Nonlinear Fractional PDEs in Mathematical Physics vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0109127
16. Optimal solutions for a bio mathematical model for the evolution of smoking habit vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.01.001
17. An Efficient Method for Solving System of Third-Order Nonlinear Boundary Value Problems vol.2011, 2011, https://doi.org/10.1155/2011/250184
18. Heat Transfer Analysis of Third-Grade Fluid Flow Between Parallel Plates: Analytical Solutions vol.3, pp.2, 2017, https://doi.org/10.1007/s40819-015-0109-8
19. Squeezing flow of MHD fluid between parallel disks vol.19, pp.1, 2018, https://doi.org/10.1080/15502287.2016.1259275
20. A simple efficient method for solving sixth-order nonlinear boundary value problems pp.1807-0302, 2018, https://doi.org/10.1007/s40314-018-0643-1