DOI QR코드

DOI QR Code

CATEGORICAL PROPERTY OF INTUITIONISTIC TOPOLOGICAL SPACES

  • Lee, Seok-Jong (DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY) ;
  • Chu, Jae-Myoung (DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY)
  • Published : 2009.10.31

Abstract

We obtain some characterizations of continuous, open and closed functions in intuitionistic topological spaces. Moreover we reveal that the category of topological spaces is a bireflective full subcategory of the category of intuitionistic topological spaces.

References

  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989), no. 1, 37-45. https://doi.org/10.1016/0165-0114(89)90215-7
  3. K. T. Atanassov, Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade's paper: Terminological difficulties in fuzzy set theory-the case of 'intuitionistic fuzzy sets', Fuzzy Sets and Systems 156 (2005), no. 3, 496-499 https://doi.org/10.1016/j.fss.2005.06.003
  4. K. T. Atanassov and S. P. Stoeva, Intuitionistic fuzzy sets,in Proceedings of the Polish Symposium on Interval & Fuzzy Mathematics (Poznan, 1983), (Poznan), Wydawn. Politech. Poznan. (1983), 13-16
  5. S. Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, Int. J. Math. Math. Sci. 27 (2001), no. 10, 621-630 https://doi.org/10.1155/S0161171201004884
  6. S. Bayhan and D. Coker, Pairwise separation axioms in intuitionistic topological spaces, Hacet. J. Math. Stat. 34S (2005), 101-114
  7. D. C¸ oker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89 https://doi.org/10.1016/S0165-0114(96)00076-0
  8. D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), no. 4, 749-764
  9. D. Coker, An introduction to intuitionistic topological spaces, Bulletin for Studies and Exchanges on Fuzziness and its Applications 81 (2000), 51–56
  10. H. Herrlich and G. E. Strecker, Category Theory: an introduction. Boston, Mass.: Allyn and Bacon Inc., 1973.

Cited by

  1. FUZZY δ-TOPOLOGY AND COMPACTNESS vol.27, pp.2, 2012, https://doi.org/10.4134/CKMS.2012.27.2.357