DOI QR코드

DOI QR Code

COMMON FIXED POINT OF COMPATIBLE MAPS OF TYPE (γ) ON COMPLETE FUZZY METRIC SPACES

  • Sedghi, Shaban (DEPARTMENT OF MATHEMATICS ISLAMIC AZAD UNIVERSITY-GHAEMSHAR BRANCH) ;
  • Turkoglu, Duran (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS GAZI UNIVERSITY) ;
  • Shobe, Nabi (DEPARTMENT OF MATHEMATICS ISLAMIC AZAD UNIVERSITY-BABOL BRANCH)
  • Published : 2009.10.31

Abstract

In this paper, we establish a common fixed point theorem in complete fuzzy metric spaces which generalizes some results in [9].

References

  1. M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos Solitons and Fractals 9 (1998), 517–529 https://doi.org/10.1016/S0960-0779(97)00150-1
  2. M. S. El Naschie,A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos Solitons and Fractals 19 (2004), 209–236 https://doi.org/10.1016/S0960-0779(03)00278-9
  3. M. S. El Naschie, On a fuzzy Kahler-like manifold which is consistent with two-slit experiment, Int. Journal of Nonlinear Science and Numerical Simulation 6 (2005), 95–98
  4. M. S. El Naschie, The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation, Chaos Solitons and Fractals 27 (2006), 9-13 https://doi.org/10.1016/j.chaos.2005.05.010
  5. A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7
  6. V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9
  7. G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 227–238
  8. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334
  9. S. Kutukcu, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps of type ($\beta$) on fuzzy metric spaces, Commun. Korean Math. Soc. 21 (2006), no. 1, 89-100 https://doi.org/10.4134/CKMS.2006.21.1.089
  10. D. Mihet¸, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), 431-439 https://doi.org/10.1016/S0165-0114(03)00305-1
  11. J. Rodr´ıguez Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007
  12. R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commutiting maps in fuzzy metric spaces, 6th Iranian Conference on Fuzzy Systems (2006), 387–391
  13. B. Schweizer, H. Sherwood, and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5–17
  14. B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), no. 2, 439–448. https://doi.org/10.1016/j.jmaa.2004.07.036
  15. Y. Tanaka, Y. Mizno, and T. Kado, Chaotic dynamics in Friedmann equation, Chaos Solitons and Fractals 24 (2005), 407–422. https://doi.org/10.1016/j.chaos.2004.09.034
  16. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Common Fixed Point Theorems for Weakly Compatible Mappings in Fuzzy Metric Spaces Using (JCLR) Property vol.03, pp.09, 2012, https://doi.org/10.4236/am.2012.39145
  2. Existence and uniqueness of a common fixed point under a limit contractive condition vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-519
  3. On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space vol.11, pp.1, 2011, https://doi.org/10.5391/IJFIS.2011.11.1.038