DOI QR코드

DOI QR Code

STRONG CONVERGENCE OF MODIFIED HYBRID ALGORITHM FOR QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Zhang, Huancheng (DEPARTMENT OF MATHEMATICS TIANJIN POLYTECHNIC UNIVERSITY) ;
  • Su, Yongfu (DEPARTMENT OF MATHEMATICS TIANJIN POLYTECHNIC UNIVERSITY)
  • Published : 2009.10.31

Abstract

In this paper, we propose a modified hybrid algorithm and prove strong convergence theorems for a family of quasi-$\phi$-asymptotically nonexpansive mappings. Our results extend and improve the results by Nakajo, Takahashi, Kim, Xu, Su and some others.

References

  1. Ya. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, 15-50
  2. Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54
  3. M. Y. Carlos and H. K. Xu, Strong convergence of the CQ method for fixed point iteration process, Nonlinear Anal. 64 (2006), 2240–2411 https://doi.org/10.1016/j.na.2005.08.018
  4. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990
  5. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174 https://doi.org/10.2307/2038462
  6. Y. Haugazeau, Sur les inequations variationnelles et la minimisation de fonctionnelles convexes, These, Universite de Paris, Paris, France.
  7. S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938–945 https://doi.org/10.1137/S105262340139611X
  8. T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Analysis 64 (2006), 1140–1152 https://doi.org/10.1016/j.na.2005.05.059
  9. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semi-groups, J. Math. Anal. Appl. 279 (2003), 372–379 https://doi.org/10.1016/S0022-247X(02)00458-4
  10. J. Schu, Iteration construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407–413 https://doi.org/10.1016/0022-247X(91)90245-U
  11. Y. F. Su and X. L. Qin, Strong convergence of modified Ishikawa iterations for nonlinear mappings, Proc. Indian Acad. Sci.(Math.Sci.) 117 (2007), 97–107 https://doi.org/10.1007/s12044-007-0008-y
  12. W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, 2000.
  13. H. Y. Zhou, Y. J. Cho, and S. M. Kang, A new iterative algorithm for approximating common fixed points for asymptotically nonexpansive mappings, Fixed Point Theory and Applications 2007 (2007), doi:10.1155/2007/64874. https://doi.org/10.1155/2007/64874

Cited by

  1. Strong convergence theorems for nonlinear operator equations with total quasi-ϕ-asymptotically nonexpansive mappings and applications vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-34
  2. Generalized Mixed Equilibrium Problems and Fixed Point Problem for a Countable Family of Total Quasi-ϕ-Asymptotically Nonexpansive Mappings in Banach Spaces vol.2012, 2012, https://doi.org/10.1155/2012/961560
  3. A New Hybrid Algorithm for Solving a System of Generalized Mixed Equilibrium Problems, Solving a Family of Quasi--Asymptotically Nonexpansive Mappings, and Obtaining Common Fixed Points in Banach Space vol.2011, 2011, https://doi.org/10.1155/2011/106323