DOI QR코드

DOI QR Code

FIXED POINTS OF GENERALIZED KANNAN TYPE MAPPINGS IN GENERALIZED MENGER SPACES

  • Published : 2009.10.31

Abstract

Generalized Menger space introduced by the present authors is a generalization of Menger space as well as a probabilistic generalization of generalized metric space introduced by Branciari [Publ. Math. Debrecen 57 (2000), no. 1-2, 31-37]. In this paper we prove a Kannan type fixed point theorem in generalized Menger spaces. We also support our result by an example.

References

  1. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), no. 1-2, 31–37
  2. B. S. Choudhury, A unique common fixed point theorem for a sequence of self-mappings in Menger Spaces, Bull. Korean Math. Soc. 37 (2000), no. 3, 569–573
  3. B. S. Choudhury and K. P. Das, A new contraction principle in Menger spaces, Acta Mathematica Sinica, English Series 24 (2008), 1379–1386 https://doi.org/10.1007/s10114-007-6509-x
  4. B. S. Choudhury and K. P. Das, Banach contraction mapping principle in generalized Menger spaces, (Communicated)
  5. P. Das, A fixed point theorem on a class of generalized metric space, Korean J. Math. Soc. 9 (2002), no. 1, 29–33
  6. P. Das and L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math. 33 (2007), no. 1, 33–39
  7. J. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal. 70 (2009), no. 1, 184–193 https://doi.org/10.1016/j.na.2007.11.045
  8. O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001
  9. R. Kannan, Some results on fixed point, Bull. Cal. Math. Soc. 60 (1968), 71–76
  10. R. Kannan, Some results on fixed point II, Amer. Math. Monthly 76 (1969), 405–408 https://doi.org/10.2307/2316437
  11. M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings Fixed Point Theory and Applications 2008 (2008), Article ID 649749 https://doi.org/10.1155/2008/649749
  12. M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings II, Bull. Kyushu Inst. Tech. Pure Appl. Math. (2008), no. 55, 1–13
  13. I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space under strict contractive conditions, Southeast Asian Bull. Math. 32 (2008), 117–124 https://doi.org/10.1016/j.na.2007.11.045
  14. B. K. Lahiri and P. Das, Fixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen 61 (2002), no. 3-4, 589–594
  15. A. Razani and K. Fouladgar, Extension of contractive maps in the Menger probabilistic metric space, Chaos, Solitons and Fractals 34 (2007), 1724–1731 https://doi.org/10.1016/j.chaos.2006.05.022
  16. P. K. Saha and R. Tiwari, An alternative proof of Kannan's fixed point theorem in generalized metric space, News Bull. Cal. Math. Soc. 31 (2008), 15–18
  17. B. Schweizer and A. Sklar, Probabilistic Metric Space, North-Holland, Amsterdam, 1983
  18. V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on PM space, Math. Sys. Theory 6 (1972), no. 2, 97-100 https://doi.org/10.1007/BF01706080
  19. Y. Shi, L. Ren, and X. Wang, The extension of fixed point theorems for set valued mapping, J. Appl. Math. & Computing 13 (2003), no. 1-2, 277-286 https://doi.org/10.1007/BF02936092
  20. B. Sing and S. Jain, A fixed point theorem in Menger spaces through weak compatibility, J. Math. Anal. Appl. 301 (2005), no. 2, 439-448 https://doi.org/10.1016/j.jmaa.2004.07.036
  21. P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975), 325-330 https://doi.org/10.1007/BF01472580

Cited by

  1. A Kannan-like contraction in partially ordered spaces vol.46, pp.2, 2013, https://doi.org/10.1515/dema-2013-0462
  2. Coupled Kannan-Type Coincidence Point Results in Partially Ordered Fuzzy Metric Spaces vol.43, pp.1, 2015, https://doi.org/10.1007/s10013-014-0075-1
  3. EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES vol.27, pp.2, 2012, https://doi.org/10.4134/CKMS.2012.27.2.265
  4. Cyclic Coupled Fixed Point Result Using Kannan Type Contractions vol.2014, 2014, https://doi.org/10.1155/2014/876749
  5. Unique fixed points of p-cyclic kannan type probabilistic contractions vol.10, pp.2, 2017, https://doi.org/10.1007/s40574-016-0073-1