DOI QR코드

DOI QR Code

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir ;
  • Mekideche, Mohamed Rachid
  • Published : 2009.09.01

Abstract

Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.

Keywords

Identification;inverse problem;optimization;separately excited dc motor;conjugate gradient method

References

  1. A. Rubaai, R. Kotaru , 'Online identification and control of a dc motor using learning adaptation of neural networks, 'IEEE Trans. Ind. Applicat., vol. 36, pp. 935-942, May/June 2000 https://doi.org/10.1109/28.845075
  2. K. S. Narendra, and K. Parthasorathy, 'Identification and control of dynamical systems using neural networks, 'IEEE Trans.on Neural Networks, vol. 1, pp. 4-27, Mar., 1990 https://doi.org/10.1109/72.80202
  3. J.C. Basilio and M.V. Moreira , 'state-space parameter identification in a second control laboratory, 'IEEE Trans. on Education , vol. 47, pp. 204-210, May 2004 https://doi.org/10.1109/TE.2004.824846
  4. S. R. Bowes, A. Sevinç, D. Holliday, 'New natural observer applied to speed-sensorless DC servo and induction motors, 'IEEE Trans. On Ind. Electronics, vol. 51, pp. 1025-1032, Oct. 2004 https://doi.org/10.1109/TIE.2004.834963
  5. S. Ichikawa, M. Tomita, S. Doki, S. Okuma, 'Sensorless control of permanent-magnet synchronous motors using online identification based on system identification theory,' IEEE Trans. On Ind. Electronics, vol. 53, pp.363-372, April. 2006 https://doi.org/10.1109/TIE.2006.870875
  6. Y. Favennec, V. Labbe, Y. Tillier, and F. Bay, 'Identification of magnetic parameters by inverse analysis coupled with finite-element modelling,' IEEE Trans. Magn., vol. 38, pp. 3607-3619, Nov. 2002 https://doi.org/10.1109/TMAG.2002.804815
  7. H. Y. Li, 'Estimation of thermal properties in combined conduction and radiation,' International Journal of Heat and Mass Transfer, vol. 42, pp. 565-572, 1999 https://doi.org/10.1016/S0017-9310(98)00146-X
  8. J. Hadamard, 'Lecture on cauchy’s problem in linear partial differential equations,' Yake University Press 1923
  9. M. Pund’homme, T. Hung Nguyen, 'Fourier analysis of conjugate gradient method applied to inverse heat conduction problem, ' International Journal of Heat and Mass Transfer, vol. 42, pp. 4447-4460, 1999 https://doi.org/10.1016/S0017-9310(99)00112-X
  10. H. M. Park, T. Y. Yoon, 'Solution of the inverse radiation problem using a conjugate gradient method, ' International Journal of Heat and Mass Transfer, vol. 43, pp. 1767-1776, 2000 https://doi.org/10.1016/S0017-9310(99)00255-0
  11. L. Linhua, T. Heping, Y. Qizheng, 'Inverse radiation problem in one-dimensional semitransparent planeparallel media with opaque and specularly reflecting boundaries,' Journal of Quantative Spectroscopy and Radiative Transfer, vol. 64, pp. 395-407, 2000 https://doi.org/10.1016/S0022-4073(99)00127-2
  12. M. Enokizono, E. Kato, Y. Tsuchida, 'Inverse analysis by boundary element method with singular value decomposition,' IEEE Trans. Magn., vol. 32, pp. 1322-1325, May 1996 https://doi.org/10.1109/20.497489

Cited by

  1. Hybrid Control Method of Magnetically Controlled Shape Memory Alloy Actuator Based on Inverse Prandtl-Ishlinskii Model vol.11, pp.5, 2016, https://doi.org/10.5370/JEET.2016.11.5.1457