Automated K-Means Clustering and R Implementation

자동화 K-평균 군집방법 및 R 구현

  • Kim, Sung-Soo (Department of Information Statistics, Korea National Open University)
  • 김성수 (한국방송통신대학교 정보통계학과)
  • Published : 2009.08.31


The crucial problems of K-means clustering are deciding the number of clusters and initial centroids of clusters. Hence, the steps of K-means clustering are generally consisted of two-stage clustering procedure. The first stage is to run hierarchical clusters to obtain the number of clusters and cluster centroids and second stage is to run nonhierarchical K-means clustering using the results of first stage. Here we provide automated K-means clustering procedure to be useful to obtain initial centroids of clusters which can also be useful for large data sets, and provide software program implemented using R.


  1. 김성수 (1999). 통계그래픽스를 이용한 K-평균 및 계층적 군집분석, <한국분류학회지>, 3, 13-27
  2. 허명회, 이용구 (2004). K-평균 군집화의 재현성 평가 및 응용, <응용통계연구>, 17, 135-144
  3. Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821
  4. Brusco, M. J. and Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering, Psychometrika, 66, 249-270
  5. Chen, J. S., Ching, R. K. H. and Lin, Y. S. (2004). An extended study of the K-means algorithm for data clustering and its applications, The Journal of the Operational Research Society, 55, 976-987
  6. Dasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via modelbased clustering, Journal of the American Statistical Association, 93, 294-302
  7. Everitt, B. S., Landau, S. and Leese, M. (2001). Cluster Analysis, Arnold, London
  8. Fraley, C. (1998). Algorithms for model-based gaussian hierarchical clustering, SIAM Journal on Scientific Computing, 20, 270-281
  9. Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via modelbased cluster analysis, The Computer Journal, 41, 578-588
  10. Fraley, C. and Raftery, A. E. (2006). MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report No. 504, Department of Statistics University of Washington
  11. Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm, Applied Statistics, 28, 100-108
  12. Kim, S. S., Kwon, S. and Cook, D. (2000). Interactive visualization of hierarchical clusters using MDS and MST, Metrika, 51, 39-51
  13. Krzanowski, W. J. (1988). Principles of Multivariate Analysis, Oxford Science, Oxford
  14. Milligan, G. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179
  15. Mojena, R. (1977). Hierarchical grouping methods and stopping rules: An evaluation, The Computer Journal, 20, 359-363
  16. Mojena, R., Wishart, D. and Andrews, G. B. (1980). Stopping rules for Wards'clustering method, COMPSTAT, 426-432
  17. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850
  18. SPSS (2000). Clementine Application Templates for Telecommunication Industries(Telco CAT), Chicago, SPSS Inc.
  19. Stanford, D. C. and Raftery, A. E. (2000). Principal curve clustering with noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 601-609
  20. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function, Journal of American Statistical Association, 58, 236-244
  21. Wehrens, R., Buydens, L. M. C., Fraley, C. and Raftery, A. E. (2004). Model-based clustering for image segmentation and large data sets via sampling, Journal of Classification, 21, 231-253

Cited by

  1. A Variable Selection Procedure for K-Means Clustering vol.25, pp.3, 2012,
  2. Variable Selection and Outlier Detection for Automated K-means Clustering vol.22, pp.1, 2015,