DOI QR코드

DOI QR Code

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

  • Mo, Weihua (School of Civil and Environmental Engineering, Cornell University) ;
  • Liu, Philip L.F. (School of Civil and Environmental Engineering, Cornell University)
  • Published : 2009.09.30

Abstract

In thus paper we validate a numerical model for wave-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the volume of fluid (VOF) method The numerical model is used to simulate solitary waves and their interaction with a group of slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

References

  1. Christensen, E. D. and Deigaard R., 2001. Large eddy simulation of breaking waves. Coastal Engng., 42, pp.53-86 https://doi.org/10.1016/S0378-3839(00)00049-1
  2. Goring, D. J. and Raichlen, F., 1980. The generation of long waves in the laboratory. Proc. 17th Int. Conf. Coastal Eng., ASCE, New York, pp.763-783
  3. Guyenne, P. and Grilli, S. T., 2006. Numerical study of threedimensional overturning waves in shallow water. J. Fluid Mech., 547, pp.361-388 https://doi.org/10.1017/S0022112005007317
  4. Hirt, C. W. and Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys., 39, pp.201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  5. Kim, J., Moin P. and Moser R., 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177, pp.133-166 https://doi.org/10.1017/S0022112087000892
  6. Lin, P. and Li, C. W., 2002. A -coordinate three-dimensional numerical model for surface wave propagation. Int. J. Numer. Meth. Fluids, 38, pp.1048-1068 https://doi.org/10.1002/fld.258
  7. Lin, P. and Liu, P. L.-F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, pp.239-264 https://doi.org/10.1017/S002211209700846X
  8. Liu, P. L.-F. Lin, P. Z. and Chang, K. A., 1999. Numerical modeling of wave interaction with porous structures. J. Wtrwy., Port, Coast., and Oc. Engng., ASCE, 125(6) pp.322-330 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
  9. Liu, P. L.-F. Wu, T.-R. Raichlen, F. Synolakis, C. E. and Borrero, J. C., 2005. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech., 536 pp.107-144 https://doi.org/10.1017/S0022112005004799
  10. Liu, Y. Xue, M. and Yue, D.K.P., 2001. Computations of fully nonlinear three-dimensional wave-wave and wavebody interactions. Part 2. Nonlinear waves and forces on a body. J. Fluid Mech., 438 , pp.41-65 https://doi.org/10.1017/S0022112001004384
  11. Mo, W. Irschik, K. Oumeraci, H. and Liu, P. L-F., 2007. A 3D numerical model for computing non-breaking wave forces on slender piles. J. Eng. Math., 58, pp.19-30 https://doi.org/10.1007/s10665-006-9094-6
  12. Morison, J. R. O'Brien, M.P. Johnson, J. W. and Schaaf, S. A., 1950. The forces exerted by surface waves on piles. J. Petroleum Technology, Petroleum Transctions, AIME, 189, pp.149-154
  13. Pope, S. B., 2001. Turbulent flows. Cambridge University Press
  14. Pope, S. B., 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35) DOI: 10.1088/1367-2630/6/1/035 https://doi.org/10.1088/1367-2630/6/1/035
  15. Rider, W. J. and Kothe, D. B., 1998. Reconstructing Volume Tracking. J. Comp. Phys., 141, pp.112-152 https://doi.org/10.1006/jcph.1998.5906
  16. Sarpkaya, T. and Isaacson, M. St. Q., 1981. Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinold, New York
  17. Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic equations. Mon. Weather Rev. 91, pp.99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  18. Watanabe, Y. and Saeki, H., 1999. Three-dimensional large eddy simulation of breaking waves. Coastal Engng., 41 (3/4), pp.281-301 https://doi.org/10.1142/S0578563499000176
  19. WU, T.-R., 2004. A numerical study of three-dimensional breaking waves and turbulence effects. PhD dissertation, Cornell University
  20. Wu, T-R. and Liu, P. L.-F., 2009a. A large eddy simulation model for tsunami and runup generated by landslides. In: Liu, P. L.-F., Yeh, H. & Synolakis, ed. 2009. Advances in Coastal and Ocean Engineering, 10, World Scientific Publishing. Ch.4
  21. Wu, T.-R. and Liu P. L.-F., 2009b. Numerical study on the three-dimensional dam-break bore interacting with a square cylinder. In: Lynett, P. ed. 2009. Nonlinear Wave Dynamics, World Scientific Publishing. Ch.14
  22. Xue, M. Xu, H. Liu, Y. and Yue, D. K. P., 2001. Computations of fully nonlinear three dimensional wave-wave and wave-body interaction. Part 1. Dynamics of steep three-dimensional waves. J. Fluid Mech., 438, pp.11-39

Cited by

  1. Numerical Investigation of Solitary Wave Interaction with a Row of Vertical Slotted Piles vol.316, pp.1551-5036, 2015, https://doi.org/10.2112/JCOASTRES-D-14-00210.1