A PSPICE Circuit Modeling of Strained AlGaInN Laser Diode Based on the Multilevel Rate Equations

  • Lim, Dong-Wook (School of Electronic & Electrical Engineering, Hongik University) ;
  • Cho, Hyung-Uk (School of Electronic & Electrical Engineering, Hongik University) ;
  • Sung, Hyuk-Kee (School of Electronic & Electrical Engineering, Hongik University) ;
  • Yi, Jong-Chang (School of Electronic & Electrical Engineering, Hongik University) ;
  • Jhon, Young-Min (Korea Institute of Science and Technology (KIST))
  • Received : 2008.12.18
  • Accepted : 2009.09.10
  • Published : 2009.09.25


PSPICE circuit parameters of the blue laser diodes grown on wurtzite AlGaInN multiple quantum well structures were extracted directly from the three level rate equations. The relevant optical gain parameters were separately calculated from the self-consistent multiband Hamiltonian. The resulting equivalent circuit model for a blue laser diode was schematically presented, and its modulation characteristics, including the pulse response and the frequency response, have been demonstrated by using a conventional PSPICE.



  1. M. Morishita, T. Ohmi, and J. Nishizawa, 'Impedance characteristics of double heterostructure laser diodes,' Solid State Electron., 22, 951-962 (1979)
  2. J. Katz, S. Margalit, C. Harder, D. Wilt, and A. Yariv, 'The intrinsic electrical equivalent circuit of a laser diode,' IEEE J. Quantum Electron. 17, 4-7 (1981)
  3. L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, 'A time-domain model for high-speed quantumwell lasers including carrier transport effects,' IEEE J. Quantum Electron. 1, 494-504 (1995)
  4. D. McDonald and R. F. O'Dowd, 'Comparison of two-and three-level rate equations in the modeling of quantumwell lasers,' IEEE J. Quantum Electron. 31, 1927-1934 (1995)
  5. J. C. Yi and N. Dagli, 'Finite-element analysis of valence band structure and optical properties of quantum-wire arrays on vicinal substrates,' IEEE J. Quantum Electron. 31, 208-218 (1995)
  6. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, 'High speed quantum-well lasers and carrier transport effects,' IEEE J. Quantum Electron 28, 1990–2008 (1992)
  7. W. H. Fan, S. M. Olaizola, J.-P. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, T. Wang, and P. J. Parbrook, 'Electron capture time in InGaN/GaN multiple quantum wells,' in Proc. Conference on Lasers and Electro-optics (San Francisco, California, USA, May 2004), CD, paper CThV2
  8. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, University of California at Santa Barbara, USA, 2003), Chapter 9
  9. T. Meyer, H. Braun, U. T. Schwarz, S. Tautz, M. Schillgalies, S. Lutgen, and U. Strauss, 'Spectral dynamics of 405 nm (Al,In)GaN laser diodes grown on GaN and SiC substrate,' Opt. Exp. 16, 6833–6845 (2008)
  10. B. P. C. Tsou and D. L. Pulfrey, 'A versatile SPICE model for quantum-well lasers,' IEEE J. Quantum Electron. 33, 246-254 (1997)
  11. S. Nagahama, T. Yamamoto, M. Sano, and T. Mukai, 'Blue-violet nitride laser,' Phys. Stat. Sol. (a) 194, 423-427 (2002)<423::AID-PSSA423>3.0.CO;2-V
  12. H. U. Cho and J. C. Yi, 'External feedback effects on the relative intensity noise characteristics of InAlGaN blue laser diodes,' J. Opt. Soc. Korea 10, 86-90 (2006)
  13. G. Jiamjun, G. Baoxin, and L. Chunguang, 'Large signal model of quantum-well lasers for SPICE,' Microwave and Optical Technology Letters 39, 295-298 (2003)
  14. C. Netzel, R. Doloca, S. Lahmann, U. Rossow, and A. Hangleiter, 'Radiative and nonradiative recombination times in optically excited GaInN/GaN quantum wells,' Phys. Stat. Sol. (c) 0, 324-328 (2002)
  15. M. Grupen, G. Kosinovsky, and K. Hess, 'The effect of carrier capture on the modulation bandwidth of quantum well lasers,' in Proc. Electron Devices Meeting (Washington, USA, Dec. 1993), pp. 609-612

Cited by

  1. PSPICE Modeling and Characterization of Optical Transmitter with 1550 nm InGaAsP LDs vol.22, pp.1, 2011,
  2. High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode vol.14, pp.4, 2010,
  3. Analytical and visual modeling of InGaN/GaN single quantum well laser based on rate equations vol.44, pp.1, 2012,
  4. Epitaxial Structure Optimization for High Brightness InGaN Light Emitting Diodes by Using a Self-consistent Finite Element Method vol.16, pp.3, 2012,
  5. Diffusion-drift model of injection lasers with double heterostructure vol.586, 2015,