DOI QR코드

DOI QR Code

THE NUMBER OF POINTS ON ELLIPTIC CURVES E0a3:y2=x3+a3 OVER Fp MOD 24

  • You, Soon-Ho ;
  • Park, Hwa-Sin ;
  • Kim, Hyun
  • Received : 2009.07.13
  • Accepted : 2009.08.21
  • Published : 2009.09.25

Abstract

In this paper, we calculate the number of points on elliptic curves $E^{a^3}_0:y^2=x^3+a^3$ over ${\mathbb{F}}_p$ mod 24 and $E^b_0:y^2=x^3+b$ over ${\mathbb{F}}_p$ mod 6, where b is cubic non-residue in ${\mathbb{F}}^*_p$. For example, if p ${\equiv}$ 1 (mod 12) is a prime, and a and a(2t - 3) are quadratic residues modulo p with $3t^2{\equiv}1$ (mod p), then the number of points in $E^{a^3}_0:y^2=x^3+a^3$ is congruent to 0 modulo 24.

Keywords

elliptic curves

References

  1. H.Cohen, A Course in Computational Atgebraic Number Theory, Grad. Texts in Math., 138. Springer-verlag, Berlin, 1993, 198-199.
  2. L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13(1906), 1-8. https://doi.org/10.1090/S0002-9904-1906-01403-3
  3. Demirci, M., Ikikardes, Y. N., Soydan. G., Cangul, I. N., Frey Elliptic Curves E : $y^{2}=x^{3}-n^{2}$ on finite field ${\mathbb{F}}_p$ where p ${\equiv}$ 1 (mod 4) is prime, to be printed.
  4. Demirci, M., Soydan, G.. Cangul. I. N., Rational points on Elliptic Curves E : $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$ where p ${\equiv}$ 1 (mod 4) is prime, Rocky Mountain Journal of Mathematics, 37, no 5, 2007.
  5. K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, Springer-Verlag, 1981.
  6. Inam, I., Soydan, G., Demirci, M. Bizim, O.. Cangul, I. N.,Corrigendum On The Number of Points on Elliptic Curves E : $y^{2}=x^{3}$+cx over ${\mathbb{F}}_p$ mod 8, Commun. Korean Math. Soc. 22 (2007). no. 2, 207-208. https://doi.org/10.4134/CKMS.2007.22.2.207
  7. Nazli Yildiz Ikikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul, Classification of the Bachet Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$, where p${\equiv}$1(mod 6) is Prime, Int. J. Math. Sci. (WASET) 1 (2007), no. 4, 239-241.
  8. Ikikardes, Soydan, G., Y. N.,Demirci, M., Cangul, I. N., Rational paints on Prey Elliptic Curves E : $y^{3}=x^{3}-n^{2}x$ Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 1, 69-76.
  9. A. W. Knapp, Elliptic curves, Princeton Uinversity Press. New Jersey 1992.
  10. D. Kim, J. K. Koo, Y. K. Park, On the elliptic curve modulo p, Journal of Number Theory 128(2008), 945-953. https://doi.org/10.1016/j.jnt.2007.04.015
  11. H. Park, D. Kim and E. Lee, The numbers of points elliptic curves E: $y^{2}=x^{3}$ + cx over ${\mathbb{F}}_p$ mod 8, Commun. Korean Math. Soc. 18 (2003), 31-37. https://doi.org/10.4134/CKMS.2003.18.1.031
  12. H. Park. J. Park and D. Kim. A classification of elliptic curves over some finite fields, Korean J. Comput. & Appl. Math.(Series A) 8(2001), 691-611.
  13. H. Park, J. Park and D. Kim, A criterion on primitive roots modulo p, J. KSIAM 4 (2001), 29-38.
  14. Schoof, R., Counting points on elliptic curves over finite fields. Journal de Theorie des Nomvres de Bordeaux, 7(1995), 219-254. https://doi.org/10.5802/jtnb.142
  15. Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul, Rational points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$, where p ${\equiv}$ 5 (mod 6) is Prime. Int. J. Math. Sci. 1(2007). no 4. 247-250.
  16. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1992.
  17. L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten alqebroischer Zoldkorper, in:Verh. I. Internat. Math. Kongress, Zurich, 1987, 182-193.

Cited by

  1. REMARK OF Pi,kON ELLIPTIC CURVES AND APPLICATION FOR MANCHESTER CODING vol.33, pp.2, 2011, https://doi.org/10.5831/HMJ.2011.33.2.153
  2. THE NUMBER OF POINTS ON ELLIPTIC CURVES y2= x3+ Ax AND y2= x3+ B3MOD 24 vol.28, pp.3, 2013, https://doi.org/10.4134/CKMS.2013.28.3.433