DOI QR코드

DOI QR Code

NEW ALGEBRAS USING ADDITIVE ABELIAN GROUPS I

  • Choi, Seul-Hee (Dept. of Mathematics, Jeonju University)
  • Received : 2009.07.13
  • Accepted : 2009.08.13
  • Published : 2009.09.25

Abstract

The simple non-associative algebra $N(e^{A_S},q,n,t)_k$ and its simple sub-algebras are defined in the papers [1], [3], [4], [5], [6], [12]. We define the non-associative algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$ and its antisymmetrized algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$. We also prove that the algebras are simple in this work. There are various papers on finding all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra (see [3], [5], [6], [9], [12], [14], [15]). We also find all the derivations $Der_{anti}(WN(e^{{\pm}x^r},0,2)_B^-)$ of te antisymmetrized algebra $WN(e^{{\pm}x^r}0,2)_B^-$ and every derivation of the algebra is outer in this paper.

Keywords

simple;stable algebra;antisymmetrized algebra;abelian;derivation

References

  1. Mohammad H. Ahmadi, Ki-Bong Nam. and Jonathan Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120. https://doi.org/10.1142/S1005386705000106
  2. G. Brown, Properties of a 29-dimensional simple Lie algebra of characteristic three, Math. Ann., 261 (1982), no. 4, 487-492. https://doi.org/10.1007/BF01457452
  3. Seul Hee Choi and Ki-Bong Nem. The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28. No.3, Hadronic Journal, 2005, 287-295.
  4. Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, Vol. 29, No. 2, 2007, 213-222. https://doi.org/10.5831/HMJ.2007.29.2.213
  5. Seul Hee Choi and Ki-Bong Nam, "Weyl type non-associative algebra using additive groups I," Algebra Colloquium, Volume 14 (2007), 479-488, Number 3, 2007. https://doi.org/10.1142/S1005386707000430
  6. Seul Hee Choi and Ki-Bong Nam, "Derivations of a restricted Weyl Type Algebra I", Rocky Mountain Math. Journals, Volume 37, Number 6, 2007. 67-84. https://doi.org/10.1216/rmjm/1181069320
  7. Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, "Derivations of a restricted Weyl type algebra containing the polynomial ring", Communication in Algebra, Volume 36, Issue 9 September 2008, 3435-3446. https://doi.org/10.1080/00927870802107835
  8. I. N. Herstein, Non commutative Rings, Cams Mathematical Monographs, Mathematical Association of America, 100-101.
  9. T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202.
  10. V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type ere Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.
  11. Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalize d Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576.
  12. Jongwoo Lee and Ki-bong Nam, "Non-Associative Algebras containing the Matrix Ring", Linear Algebra and its Applications Volume 429, Issue 1, 1 July 2008, Pages 72-78. https://doi.org/10.1016/j.laa.2008.02.005
  13. Ki-Bong Nam, Generalized Wand H Type Lie Algebras, Algebra Colloquium 6:3, (1999), 329-340.
  14. Ki-Bong Nam. On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500.
  15. Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No, 3, 159-164.
  16. D. P. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998).
  17. A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras. Math. USSR-Izvestija, 3, 1969, 707-722. https://doi.org/10.1070/IM1969v003n04ABEH000798
  18. R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138.

Cited by

  1. NOTES ON AN ALGEBRA WITH SCALAR DERIVATIONS vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.179
  2. A GROWING ALGEBRA CONTAINING THE POLYNOMIAL RING vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.467