DOI QR코드

DOI QR Code

REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Han, Sang-Eon (Faculty of Liberal Education, Institute of Pure and Applied Mathematics, Chonbuk National University)
  • Received : 2009.06.24
  • Accepted : 2009.09.07
  • Published : 2009.09.25

Abstract

As a survey-type article, the paper reviews some results on a regular covering space in digital covering theory. The recent paper [10](see also [12]) established the notion of regular covering space in digital covering theory and studied its various properties. Besides, the papers [14, 16] developed a discrete Deck's transformation group of a digital covering. In this paper we study further their properties. By using these properties, we can classify digital covering spaces. Finally, the paper proposes an open problem.

Keywords

digital space;digital isomorphism;strong k-deformation retract;regular covering space;digital covering space;simply k-connected;discrete Deck's transformation group;automorphism group

References

  1. L. Boxer, Digital Product s, Wedge: and Covering Spaces, Jour. of Mathematical Imaging and Vision 25(2006) 159-171. https://doi.org/10.1007/s10851-006-9698-5
  2. L. Boxer , A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10(1999) 51-62. https://doi.org/10.1023/A:1008370600456
  3. L. Boxer and I. Karaca, The classification of digital covering spaces, Jour. of Mathematical Imaging and Vision 32(2008) 23-29. https://doi.org/10.1007/s10851-008-0088-z
  4. S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1)(2003) 153-162.
  5. S.E. Han, Algorithm for discriminating digital images w.r.t. a digital ($k_0$, $k_1$)-homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 505-512.
  6. S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18 (1-2)(2005) 487-495.
  7. S.E. Han, Non-product property of t he digital fundamental group. Information Sciences 171 (1-3)(2005) 73-91. https://doi.org/10.1016/j.ins.2004.03.018
  8. S.E. Han, On the simplicial complex stemmed from a digital graph. Honam Mathematical Journal 27 (1),(2005) 115-129.
  9. S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3)(2006)332-348. https://doi.org/10.1016/j.ins.2004.11.003
  10. S.E. Han, Discrete Homotopy of a Closed k-Surface. LNCS 4040. Springer-Verlag, Berlin, pp.214-225 (2006). https://doi.org/10.1007/11774938_17
  11. S.E. Han, Minimal simple closed k-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134. https://doi.org/10.1016/j.ins.2005.01.002
  12. S.E. Han, The fundamental group of a closed k-surface, Information Sciences 177(18)(2007) 3731-3748. https://doi.org/10.1016/j.ins.2007.02.031
  13. S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44 (6)(2007) 1479-1503. https://doi.org/10.4134/JKMS.2007.44.6.1479
  14. S.E. Han, Comparison among digital fundamental groups and its applications, Information Science 178(2008) 2091-2104. https://doi.org/10.1016/j.ins.2007.11.030
  15. S.E. Han, Continuities and homeomorphisms in computer topology, Journal of the Korean Mathematical Society 45 (4)(2008) 923-952. https://doi.org/10.4134/JKMS.2008.45.4.923
  16. S.E. Han, Equivalent ($k_0$, $k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008)550-561. https://doi.org/10.1016/j.ins.2007.02.004
  17. S.E. Han, Map preserving local properties of a digital image, Acta Applicandae Mathematicae 104 (2) (2008) 177-190. https://doi.org/10.1007/s10440-008-9250-2
  18. S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1)(2008) 1-16. https://doi.org/10.1007/s10851-007-0061-2
  19. S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae (2009) doi 10.1007/s 10440-008-9316-1, Online first publication. https://doi.org/10.1007/s10440-008-9316-1
  20. S.E. Han, Existence problem of a generalized universal covering space, Acta Applicandae Mathematicae(2009) doi 10.1007/s 10440-008-9347-7, Online first publication. https://doi.org/10.1007/s10440-008-9347-7
  21. S.E. Han, Multiplicative property of the digital fundamental group. (2009) doi 10.1007/s 10440-009-9486-5, Online first publication. https://doi.org/10.1007/s10440-009-9486-5
  22. S.E. Han, KD-$k_0$, $k_1$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society, to appear.
  23. S.E. Han, Automorphism group of a cartes ian product of digital coverings, Annals of Mathematics, submitted.
  24. S.E. Han, N.D. Georgiou. On computer topological function space Journal of the Korean Mathematical Society 46(4) 841-857 (2009). https://doi.org/10.4134/JKMS.2009.46.4.841
  25. E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics(1987) 227-234.
  26. In-Soo Kim, S.E. Han, Digital covering therory and its applications, Honam Mathematical Journal 30(4) (2008) 589-602. https://doi.org/10.5831/HMJ.2008.30.4.589
  27. In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity. Acta Applicandae Mathematicae (2009), doi 10.1007/s 10440-008-9422-0, Online first publication. https://doi.org/10.1007/s10440-008-9422-0
  28. T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, (1996).
  29. W.S. Massey, Algebraic Tnpology, Springer-Verlag, New York, 1977.
  30. A. Rosenfeld, Digital topology, Am. Math. Mon. 86(1979) 76-87.
  31. A. Rosenfeld and R. Klette, Digital geometry. Information Sciences 148(2003)123-127. https://doi.org/10.1016/S0020-0255(02)00284-0
  32. E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.

Cited by

  1. REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.515
  2. PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.375