The effect of the shape factor of an underground cavern in good rock conditions on its stability by 2D discontinuum analysis

2차원 불연속체 해석에 의한 양호한 암반 내의 지하공동 형상비가 안정성에 미치는 영향 검토

  • 유광호 (수원대학교 토목공학과) ;
  • 정지성 (삼보기술단 지반사업부)
  • Published : 2009.06.30

Abstract

Recently the concern about the construction of underground structures such as oil and food storage caverns is increasing in Korea and abroad. The stability of those underground caverns is greatly influenced by shape factor and the size of excavation area as well as the joint conditions. In this study, therefore, the effect of the shape factor of an underground cavern on its stability was analyzed in terms of safety factor. To this end, four different shape factors of a cavern excavated in good rock conditions were investigated and sensitivity analyses were performed based on overburden, lateral earth pressure coefficient, joint spacing, properties, and orientation. The stability of a cavern is evaluated in terms of safety factor estimated numerically based on the shear strength reduction technique. In future, this study is expected to be helpful in designing and evaluating the stability of caverns excavated in discontinuous rock masses.

References

  1. 김영민 (1999), “유한요소법에 의한 사면붕괴 거동해석에 미치는 영향분석", 한국지반공학회 논문집, 제 15 권, 제5 호, pp. 19-28.
  2. 김치환 (2000), “개별요소법에 의한 터널의 안정성 해석에 있어 설계정수의 결정", 터널과 지하공간, 한국암반공학회 논문집, 제10권, 제 3호, pp. 278-290.
  3. 이성규, 김치환 (2001), “개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb 절리 모델의 비교”, 터널과 지하공간, 한국암반공학회 논문집, 제 11 권, 제 2호, pp. 167-173.
  4. 유광호, 박언준, 배규진 (2000), “연약암반층에 굴착된 터널의 안전율 평가", 한국터널협회 논문집, 제 2 권, 제 3호, pp. 47-57.
  5. 유광호, 박연준, 강용 (2001), “절리암반 터널의 안전율 평가를 위한 수치해석적 연구", 터널과 지하공간, 한국암반공학회 논문집, 제 11 권, 제 3호, pp. 279-288.
  6. 유광호, 박연준, 홍근영, 이현구, 김재권 (2005), “지보재 파괴를 고려한 터널 안전율의 수치해석적 산정 연구", 터널기술, 한국터널공학회 논문집, 제7권, 제 1 호, pp. 37-49.
  7. 유광호, 정지성, 2008, “2차원 연속체 해석에 의한 지하 공동 형상비별 안정성 평가 비교”, 터널기술, 한국터널공학회 논문집, 제10 권, 제2호, pp. 193-205.
  8. Barton, N., Lien, R. and Lunde, J. (1974), “ Engineering classification of rock masses for the design of tunnel support", Rock Mechanics., Vol. 6, No. 4, pp. 189-236. https://doi.org/10.1007/BF01239496
  9. Giam, S. K. and Donald, I. B. (1988), “Determination of critical slip surfaces for slopes via stress-strain calculations", Proc. Fifth Australia-New Zealand Conference on Geomech., Sydney, Australia, pp. 461-464.
  10. Itasca Consulting Group, Inc. (2004), UDEC-2D, Universal Distinct EIement Code, Version 4.0, Minneapolis, Minnesota, USA
  11. Matsui, T. and San, K. C. (1992), “ Finite element slope stability analysis by shear strength reduction technique", Soils and Foundation, Vol. 32, No. 1, pp. 59-70. https://doi.org/10.3208/sandf1972.32.59
  12. Naylor, D. J. (1982), “Finite elements and slope stability", Numer. Meth. in Geomech., Proc. NATO Advanced Study Institute. Lisbon, Portugal, pp. 229-244.
  13. Ugai, K. and Leshchinsky, D. (1995), “Three-dimensional limit equilibrium and finite element analyses: a comparison of results", Soils and Foundations, Vol. 35, No. 4, pp.1-7. https://doi.org/10.3208/sandf.35.4_1
  14. Zienkiewicz, O. C., Humpheson, C. and Lewis, R W. (1975), “Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, Vol. 25, No. 4, pp. 671-689. https://doi.org/10.1680/geot.1975.25.4.671