DOI QR코드

DOI QR Code

영구연화거동을 고려한 마찰교반용접(FSW)된 DP590 강판의 탄성복원 예측

Springback Prediction of Friction Stir Welded DP590 Steel Sheet Considering Permanent Softening Behavior

  • 김준형 (삼성전자 DMC 총괄 무선사업부) ;
  • 이원오 (한국기계연구원 부설 재료연구소 융합공정연구본부) ;
  • 정경환 (포스코 자동차강재연구그룹) ;
  • 박태준 (서울대학교 재료공학부) ;
  • 김돈건 (서울대학교 재료공학부) ;
  • ;
  • 김대용 (한국기계연구원 부설 재료연구소 융합공정연구본부)
  • 발행 : 2009.07.01

초록

In order to better predict the springback for friction stir welded DP590 steel sheet, the combined isotropic-kinematic hardening was formulated with considering the permanent softening behavior during reverse loading. As for yield function, the non-quadratic anisotropic yield function, Yld2000-2d, was used under plane stress condition. For the verification purposes, comparisons of simulation and experiments were performed here for the unconstrained cylindrical bending, the 2-D draw bending tests. For two applications, simulations showed good agreements with experiments.

참고문헌

  1. M. W. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes, GB Patent Applications No. 9125978.8, Dec. 1991; US Patent No. 5460317, Oct. 1995
  2. M. W. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes, US Patent No. 5460317, Oct. 1995
  3. K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin, D. P. Field, 2001, Friction stir welding and processing I, A Publication of TMS, Warrendale
  4. K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin,, T. Lienert, 2003, Friction stir welding and processing II, A Publication of TMS, Warrendale
  5. D. Kim, M.-G. Lee, C. Kim, M. L. Wenner, R. H. Wagoner, F. Barlat, K. Chung, J. R. Youn, T. J. Kang, 2003, Measurements of anisotropic yielding, Bauschinger and transient behavior of automotive dual-phase steel sheets, Met. Mat. –Int., Vol. 9, No. 6, pp. 561-570 https://doi.org/10.1007/BF03027256
  6. K. Chung, M. -G. Lee, D. Kim, C. Kim, M. L. Wenner, F. Barlat, 2005, Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, Part I: Theory and formulation. Int. J. Plasticity, Vol. 21, pp. 861-882 https://doi.org/10.1016/j.ijplas.2004.05.016
  7. J. Kim, W. Lee, D. Kim, J. Kong, C. Kim, M. L. Wenner, K. Chung, 2006, Effect of hardening laws and yield function types on spring-back simulations of dual-phase steel automotive sheets, Met. Mat. – Int., Vol.12, No.4, pp. 293-305
  8. F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, R. E. Dick, 2005, Linear transfomation-based anisotropic yield functions. Int. J. Plasticity, Vol. 21, No. 5, pp. 1009-1039 https://doi.org/10.1016/j.ijplas.2004.06.004
  9. ABAQUS, 2002. User’s manual for version 6.3, Hibbitt, Karlsson & Sorensen Inc
  10. NUMISHEET'93 Benchmark Problem, 1993. In: A. Makinouchi, E. Nakamachi, E. Onate and R.H. Wagoner (Eds), Proceedings of 2nd International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes-Verification of Simulation with Experiment, Isehara, Japan
  11. NUMISHEET 2002 Benchmark Problem, 2002. D. Y. Yang, S. I. Oh, H. Huh and Y. H. Kim(Eds.), Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju Island, Korea
  12. K. Chung, O. Richmond, 1993, A deformation theory of plasticity based on minimum work paths, Int. J. Plasticity, Vol. 9, pp. 907-920 https://doi.org/10.1016/0749-6419(93)90057-W