DOI QR코드

DOI QR Code

Efficacy of Bacteriophage Treatment in Murine Burn Wound Infection Induced by Klebsiella pneumoniae

  • Published : 2009.06.30

Abstract

In the present study, the therapeutic potential of purified and well-characterized bacteriophages was evaluated in thermally injured mice infected with Klebsiella pneumoniae B5055. The efficacy of five Klebsiella phages (Kpn5, Kpn12, Kpn13, Kpn17, and Kpn22) was evaluated on the basis of survival rate, decrease in bacterial counts in different organs of phage-treated animals, and regeneration of skin cells as observed by histopathological examination of phage-treated skin. Toxicity studies performed with all the phages showed them to be non-toxic, as no signs of morbidity and mortality were observed in phage-treated mice. The results of the study indicate that a single dose of phages, intraperitoneally (i.p.) at an MOI of 1.0, resulted in significant decrease in mortality, and this dose was found to be sufficient to completely cure K. pneumoniae infection in the burn wound model. Maximum decrease in bacterial counts in different organs was observed at 72 h post infection. Histopathological examination of skin of phage-treated mice showed complete recovery of burn infection. Kpn5 phage was found to be highly effective among all the phages and equally effective when compared with a cocktail of all the phages. From these results, it can be concluded that phage therapy may have the potential to be used as stand-alone therapy for K. pneumoniae induced burn wound infection, especially in situations where multiple antibiotic-resistant organisms are encountered.

References

  1. Adams, M. (ed.). 1959. Bacteriophages. Interscience Publishers, London, United Kingdom
  2. Benedict, L. R. N. and R. S. Flamiano. 2004. Use of bacteriophages as therapy for Escherichia coli-induced bacteremia in mouse models. Phil. J. Microbiol. Infect. Dis. 33: 47-51
  3. Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70:204-210 https://doi.org/10.1128/IAI.70.1.204-210.2002
  4. Brans, T. A., R. P. Dutrieux, M. J. Hoekstra, R. W. Kreis, and J. S. du Pont 1994. Histopathological evaluation of scalds and contact burns in the pig model. Burns 20: 548-551
  5. Bruttin, A. and H. Brussow. 2005. Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. Antimicrob. Agents Chemother. 49: 2874-2878 https://doi.org/10.1128/AAC.49.7.2874-2878.2005
  6. Capparelli, R., I. Ventimiglia, S. Roperto, D. Fenizia, and D. Iannelli. 2006. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect. 12: 248-253 https://doi.org/10.1111/j.1469-0691.2005.01340.x
  7. Casewell, M. W. and I. Phillips. 1981. Aspects of the plasmid mediated antibiotic resistance and epidemiology of Klebsiella species. Am. J. Med. 70: 459-462 https://doi.org/10.1016/0002-9343(81)90788-9
  8. Cerveny, K. E., A. DePaola, D. H. Duckworth, and P. A. Gulig. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 70: 6251-6262 https://doi.org/10.1128/IAI.70.11.6251-6262.2002
  9. Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. 2006. Burn wound infections. Clin. Microbiol. Rev. 19: 403-434 https://doi.org/10.1128/CMR.19.2.403-434.2006
  10. Cryz, S. J. Jr., E. Furer, and R. Germanier. 1984. Experimental Klebsiella pneumoniae burn wound sepsis: Role of capsular polysaccharide. Infect. Immun. 43:440-441
  11. Dale, R. M., K. G. Schnell, and J. P. Wong. 2004. Therapeutic efficacy of 'Nubiotics' against burn wound infection by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48:2918-2923 https://doi.org/10.1128/AAC.48.8.2918-2923.2004
  12. Danelishvili, L., L. S. Young, and L. E. Bermudez. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent Mycobacterium. Microb. Drug Resist. 12: 1-6 https://doi.org/10.1089/mdr.2006.12.1
  13. Inal, J. M. 2003. Phage therapy: A reappraisal of bacteriophages as antibiotics. Arch. Immunol. Ther. Exp. (Warsaw) 51: 237-244
  14. Ioseliani, G. D., G. D. Meladze, N. S. Chkhetiia, M. G. Mebuke, and N. I. Kiknadze. 1980. Use of bacteriophage and antibiotics for prevention of acute postoperative empyema in chronic suppurative lung diseases. Grudn. Khir. 6: 63-67
  15. Kehinde, A. O., S. A. Ademola, A. O. Okesola, O. M. Oluwatosin, and R. Bakare. 2004. Pattern of bacterial pathogens in burn wound infections in Ibadan, Nigeria. Ann. Burns Fire Disast. 17: 12-15
  16. Levin, B. and J. J. Bull. 1996. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881-898 https://doi.org/10.1086/285884
  17. Loc Carrillo, C. L., R. D. J. Atterbury, A. El-Shibiny, P. L. Connerton, E. Dillon, A. Scott, and I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71: 6554-6563 https://doi.org/10.1128/AEM.71.11.6554-6563.2005
  18. Lorch, A. 1999. Bacteriophages: An alternative to antibiotics? Biotech. Develop. Monitor 39: 14-17
  19. Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage $\phi$ MR11. J. Infect. Dis. 187: 613-624 https://doi.org/10.1086/374001
  20. Matsuzaki, S., M. Rashel, J. Uchiyma, T. Ujihara, M. Kuroda, M. Ikeuchi, M. Fujieda, J. Wakiguchi, and S. Imai. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11: 211-219 https://doi.org/10.1007/s10156-005-0408-9
  21. McVay, C., S. M. Velasquez, and J. A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 51: 1934-1938 https://doi.org/10.1128/AAC.01028-06
  22. Merril, C. R., B. Biswas, R. Carlon, N. C. Jensen, G. J. Creed, S. Zullo, and S. Adhya. 1996. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. U.S.A. 93: 3188-3192 https://doi.org/10.1073/pnas.93.8.3188
  23. Nasser, S., A. Mabrouk, and A. Maher. 2003. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 29:229-233 https://doi.org/10.1016/S0305-4179(02)00285-1
  24. Ozumba, U. C. and B. C. Jiburum. 2000. Bacteriology of burn wounds in Enugu, Nigeria. Burns 26: 178-180 https://doi.org/10.1016/S0305-4179(99)00075-3
  25. Paissano, A. F., B. Spira, S. Cai, and A. C. Bombana. 2004. In vitro antimicrobial effects of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol. Immunol. 19: 327-330 https://doi.org/10.1111/j.1399-302x.2004.00166.x
  26. Rumbaugh, K. P., J. A. Griswold, B. H. Iglewski, and A. N. Hamood. 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67: 5854-5862
  27. Schembri, M. A., J. Blom, A. K. Krogfelt, and P. Klemm. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73: 4626-4633 https://doi.org/10.1128/IAI.73.8.4626-4633.2005
  28. Signori, M., S. Grappolini, E. Magliano, and L. Donati. 1992. Updated evaluation of the activity of antibiotics in a burn center. Burns 18: 500-503 https://doi.org/10.1016/0305-4179(92)90185-W
  29. Smith, H. W. and M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phages:Its general superiority over antibiotics. J. Gen. Microbiol. 128:307-318
  30. Stroj, L., B. Weber-Dabrowska, K. Partyka, M. Mulczyk, and M. Wojcik. 1999. Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurol. Neurochir. Pol. 3: 693-698
  31. Sulakvelidze, A., Z. Alavidze, and J. G. Morris Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45:649-659 https://doi.org/10.1128/AAC.45.3.649-659.2001
  32. Theil, K. 2004. Old dogma, new tricks - 21st century phage therapy. Nat. Biotechnol. 22: 31-36 https://doi.org/10.1038/nbt0104-31
  33. Wang, J., B. Hu, M. Xu, Q. Yan, S. Liu, X. Zhu, ei al. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17: 309-317
  34. Weber-Dabrowska, B., M. Zimecki, and M. Mulczyk. 2000. Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch. Immunol. Ther. Exp. 48: 31-37
  35. Wills, Q. F., C. Kerrigan, and J. A. Soothill. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49: 1220-1221 https://doi.org/10.1128/AAC.49.3.1220-1221.2005